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Abstract� We present and experimentally validate two min-
imal compact memristive models for spiking neuronal signal
generation using commercially available low-cost components.
The �rst neuron model is called the Memristive Integrate-and-
Fire (MIF) model, for neuronal signaling with two voltage levels:
the spike-peak, and the rest-potential. The second model MIF2
is also presented, which promotes local adaptation by accounting
for a third refractory voltage level during hyperpolarization.
We show both compact models are minimal in terms of the
number of circuit elements and integration area. Using the MIF
and MIF2 models, we postulate the design of a memristive
solid-state brain with an estimation of its surface area and power
consumption. Analytical projections show that a memristive
solid-state brain could be realized within (i) the surface area
of the median human brain, 2,400cm2, (ii) the same volume
of the median human brain, and (iii) a total power budget of
approximately 20 W using a 3.5 nm technology. Distinct from
the past decade of memristive neuron literature, our benchmarks
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are attained using generic commercially available memristors
that are reproducible using off-the-shelf components. We expect
this work can promote more experimental demonstrations of
memristive circuits that do not rely on prohibitively expensive
fabrication processes.

Index Terms� Neuromorphic computing, memristor, neuronal
signal generation, minimal compact model, Hodgkin-Huxley
model, physiological model, memristive solid-state brain.

I. INTRODUCTION

NEUROMORPHIC computing is pursued to overcome the
limitations of von Neumann architecture and Moore�s

law [1], [2]. Harnessing brain-inspired properties such as
in-memory computing, spike-based encoding, and adaptation
has bolstered energy-delay ef�ciency by orders of magnitude
for certain classes of computation [3], [4]. Architectural
emulation of the brain is naturally complemented by device-
level optimization. The use of functional blocks in integrated
circuits that behave similarly to the core units of the central
nervous system (neurons and synapses) may enable circuits
to ef�ciently accomplish tasks associated with human
cognition [5], [6].

The memristor was �rst introduced by Chua [9] as
a circuit element as fundamental as R, L, and C, the
notion of which was generalized by Chua and Kang in
1976 [10].The demonstration of nanoscale memristors fabri-
cated by Strukov, et al. [11] propelled a myriad of research
and applications in memristive storage-class memory, sens-
ing, logic operations and memcomputing [12]�[18]. In more
recent times, memristors have become available through com-
mercial fabrication processes [19], [20] and are commonly
used in non-volatile resistive switching arrays as resistive
random-access memory (RRAM) [21], [22].

Memristor technologies have ushered in new approaches for
emulating both biological neurons and synapses [23]�[26].
Synaptic plasticity has been demonstrated in memristors
by using spike trains to potentiate or depress conduc-
tance [27]. Potentiation and depression have been observed in
synaptic memristors between pre-synaptic and post-synaptic
neurons [28]. A variety of approaches are used to design elec-
tronic neurons that generate spiking signals and to implement
synaptic interconnects, with the emphasis of using memristors
on low energy consumption and high packing density.

There is a high barrier to accessing experimental data
and hardware for prototyping memristive circuits. Most
experimental demonstrations rely on specialized fabrication
processes. The reproducibility challenge is compounded by
limited accessibility to commercial, low-cost, and robust

1549-8328 ' 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 22:09:26 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-5832-4054
https://orcid.org/0000-0002-1077-7038
https://orcid.org/0000-0003-4026-9648
https://orcid.org/0000-0003-4731-1976
https://orcid.org/0000-0002-1652-5464


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS�I: REGULAR PAPERS

Fig. 1. Hodgkin-Huxley neuron model [7]. (a) An equivalent circuit for the HH model [7]. (b) An equivalent circuit for the memristive HH model [8].
(c) An action potential waveform showing rest, threshold and reset potentials.

discretely packaged memristors [29], [30]. The challenge
in developing hardware prototypes has made experimental
validation dif�cult.

Beyond neural network acceleration, the design of a
solid-state brain that can harness the neural code in an unsu-
pervised manner has received increasing attention as a way to
handle huge sensory input data without being thwarted by the
von Neumann bottleneck [31]. The solid-state brain mimics the
structure of the cerebral cortex by connecting neurons with a
large fan-out of plastic synapses. It is conjectured the neurons
and synapses can be realized with memristors integrated with
a CMOS process. However, the design of a large-scale solid-
state brain remains elusive in neuromorphic computing due to
the enormous overheads associated with mimicking the surface
area of neural tissue, constrained power consumption, routing
and massive parallelism of synaptic connections.

In this paper, we aim to overcome several of these bar-
riers by introducing the memristive integrate-and-�re (MIF)
neuron circuit model. Firstly, we experimentally demonstrate
the generation of spiking neuronal signals using our MIF and
MIF2 models implemented with commercially available, low-
cost components. The vast literature on memristive neuron
circuits and neuristors are typically limited by either being
simulation-only idealized studies, or rely on device-dependent
characteristics not readily accessible to the broader research
community. With similar neuron circuits presented in the past,
we demonstrate the operation of the MIF and MIF2 circuits
without specialized fabrication processes that make our results
reproducible by an amateur in hardware prototyping on a
tight budget. We develop a circuit-theoretic foundation of our
models that mimic the passive membrane model [32], and
by extension, our model demonstrates minimal complexity
and integration area. An experimental energy analysis is con-
ducted, showing that a scaled-up system with the same order
of neurons as in the human brain consumes approximately
an equivalent amount of power. We present our results with
the hope that it fosters more experimental demonstrations of
bio-inspired memristive circuits and systems in the future.

This paper is organized as follows: section II outlines con-
ventional neuronal circuit models, providing a background of
the Hodgkin-Huxley (HH) and Leaky Integrate-and-Fire (LIF)
models. Section III presents the MIF and MIF2 models, with a
comprehensive characterization of their operating modes and
their minimality. Each model circuit is analyzed as a sim-
pli�ed linear circuit for both on and off states of memristors
before conducting a more precise nonlinear analysis with CAD
tools. A scaled implementation demonstrating the feasibility
of meeting the requirements for a VLSI implementation of a
memristive solid-state brain is provided in section IV, followed
by conclusions in section V.

II. BACKGROUND

A. The Hodgkin-Huxley Neuron Model
The physiologically derived HH model [7] is among the

most pervasive neuron models used to simulate spiking
neuronal signals, or action potentials. Fig. 1(a) shows its equiv-
alent circuit. The sodium and potassium channels, depicted
by conductors GNa and GK, were described by Hodgkin and
Huxley as time-varying nonlinear conductors.

Noble reduced the HH model by setting the leakage channel
conductance to GL = 0. The reduced HH model provides
the best �t for human cardiac action potentials [33]. Chua
and Kang identi�ed GNa and GK as memristors [10], and
presented a comprehensive circuit-theoretic foundation for the
HH axon circuit model, shown in Fig. 1(b). It should be noted
that this analysis was focused on the memristive properties of
the sodium and potassium conductive channels used in the HH
model, without modifying the conductors� model equations.

The membrane voltage V (t) from the HH equations is
known to accurately replicate the physiological action poten-
tial. The HH system is a highly stiff system of ordinary dif-
ferential equations, and there is no closed-form solution. For a
more tractable analysis, many modi�cations of the model have
been proposed. Fig. 1(c) illustrates a typical approximation of
the action potential. It shows a rest-potential Vrest, a reset-
potential Vreset below the rest-potential, which follows in time
after the membrane reaches a threshold-potential Vthreshold.

B. The Leaky Integrate-and-Fire (LIF) Model
Where simpler models are desired that do not consider

individual ion channels, the LIF model shown in Fig. 2(a)
has been broadly adopted as a simple neuron model [32],
[36]. It is straightforward to integrate LIF neurons into modern
deep learning frameworks [37], while the HH model is better
tailored for accurate physiological emulation. Input synaptic
current I (t) can be described by using a time-varying alpha
function in (1), although a saw tooth or a pulse function can
be used as an alternative. The plot of (1) is shown in Fig 2(b).

I (t) = I0 • e • (t/��) • e� t
�� for t > 0 (1)

Note the �rst, non-italicized �e� is the Neper constant. Under
the in�uence of I (t), V (t) across the capacitor C is charged
up with an RC time constant. When V (t) reaches a threshold-
potentialVthreshold, the charge accumulated on C must dis-
charge until a rest-potential Vrest is reached. Figs. 2(c-d)
illustrate this operation for the case of a DC input current
and a zero rest-potential (Erest = 0) [34]. However, if I (t)
does not charge C to the level Qpeak = VthresholdC with
Vthreshold representing a voltage level corresponding to Vth in
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Fig. 2. The leaky integrate-and-�re (LIF) neuron model. (a) Schematic
of the LIF electrical model. (b) Input current in the form of an alpha
function (�alpha = 0.1, I0 = 1) (c) Controlled spiking in the LIF model
with a comparison of membrane potential and threshold at each time step.
When a spike is triggered, a voltage-controlled switch discharges C for the
duration of the refractory period t0. Reproduced with permission from Tal and
Schwartz, [34]. (d) A generalized LIF model with threshold control. Figure
from Teeter et al. (2018) reproduced under a CC BY 4.0 license [35].

Fig. 2(c), the capacitor would fail to discharge to reproduce
the biological reset condition. In Fig. 2(c), the inequality
V (t) � Vthreshold must be evaluated using an active circuit
such as a comparator. Each time the threshold is reached, the
membrane potential is reset. Thus, the generalized LIF model
requires additional overhead, as depicted in Fig. 2(d). In the
generalized LIF model, the membrane potential can be pulled
down below the rest-potential using adaptive control, external
to the LIF model. This external control requires sophisticated,
active circuits composed of MOS transistors, resistors, and
even a silicon-controlled recti�er (SCR).

C. Memristors
The memristor was initially postulated as a fundamental

circuit component that relates �ux to charge [9]. This linkage
would allow a driving voltage (or current) to program the
resistance, which would then remain constant in absence
of any additional modulation. The �ux-charge linkage was
generalized in [10] to encompass alternative mechanisms of
resistive switching. An electric �eld can be used to modulate
the resistance of a memristor through a variety of physical
means, including ionic transport [11], formation of conductive
�laments [38], joule-heating (inducing phase change) [39], and
spin-transfer torque [40]. A memristor is now broadly classed
as a non-volatile electronically-variable resistive memory.
Analogously, the conductance of a synaptic channel between
a pair of neurons is modulated by action potentials, which is
a voltage spike that results in the build-up of an electric �eld
and has led to the broad adoption of memristive synapses that
retain memory of their synaptic strength.

Resistance switching may be incremental/soft (analog) or
hard (digital). Analog switching may take place across a broad
spectrum of conductance states that allows gradual modulation
of conductance, in a manner that resembles synaptic weight
updates [41]�[43]. Hard switching between two resistance
states are applicable in neuronal spike generation mechanisms,
where the absence of an action potential corresponds to a rest-
ing state, and the generation of an action potential arises once
the memristor has been switched [44]. Memristors generally
include devices that exhibit transient memory effects across a
variety of time scales [27], [45], [46], which can be likened
to transient behaviors in neurons, such as spike-frequency
adaptation, homeostatic thresholds, and dendritic pruning.

Recently, an integrated system using volatile memristor�C
LIF neurons and memristor synapses was shown to mimic
particular cortical functions [35]. It generated spiking signals
with two voltage levels (the threshold potential and the rest
potential) by applying careful timing control on the input
signal, and mimics hyperpolarization to the reset-potential
shown in Fig. 1(c) by using post-synaptic currents. Here, the
memristor must be volatile and is thus material-dependent to
instil a relaxation time. To remove such limitations as in our
contribution, we introduce the MIF model shown in Fig. 3(a),
which allows a broader class of memristors to be integrated as
neurons. We demonstrate our results on low-cost and commer-
cially available memristors, and seek to eliminate the stigma
that memristive research is either performed using idealized
simulations or requires expensive fabrication facilities.

III. THE MEMRISTIVE INTEGRATE-AND-FIRE
NEURON MODEL

In this section, we present two versions of the memristive
neuron model. Both exhibit threshold �ring and a reset mech-
anism that is required by integrate-and-�re neurons; the subtle
difference is that the second version adds a sub-rest potential
after spiking to the �rst version. This can be thought of as
a refractory action induced by an additional memristor and
a DC voltage source. In practice, such use of a DC source
will not require a separate battery for each neuron. Rather,
a DC voltage supply rail would be used, which will add
some overhead for physical connections, but is much simpler
and less area consuming than placing separate DC batteries.
We �rst analyze the MIF and MIF2 circuits using simpli�ed
on-off state-dependent linear circuits. Following that, a precise
nonlinear analysis in Cadence/Spectre is undertaken.

A. MIF Neuristor
In place of the resistor R in the LIF model shown in

Fig. 2(a), the �rst version of the MIF model in Fig. 3(a)
uses a single memristor. This model does not require external
adaptive control, to discharge the capacitor when the action
potential reaches Vthreshold. The MIF model is device-agnostic;
as long as the energy supplied is suf�cient for bipolar resis-
tance switching, the circuit will be capable of action potential
generation. This is a signi�cant improvement in view of the
integration complexity and packing density, since the imple-
mentation of an adaptive control circuitry requires the CMOS
substrate to be connected through via holes to higher layer
memristors. Prior implementations of similar neuristor circuits
are typically dependent upon restrictive volatile characteristics,
with relaxation times far smaller than any RC delay present
in the neuron [47], [48]. The MIF neuron model generalizes
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Fig. 3. The memristive integrate-and-�re (MIF) neuron model. (a) The MIF
model replaces the R of the LIF model with one memristor. (b) I � V curve
of a simple digital memristor. (c) The measured I � V curve of the volatile
memristor selector that is used to obtain the MIF simulation results in (d).
In Fig. 3(d), I (t) is the current described by (1).

previous volatile memristor-based designs to reproduce the
dynamics of biological neurons more closely, and the fol-
lowing work fosters reproducibility by using commercially
available components.

Practical considerations on cycle-to-cycle variations and the
ratio of pre- and post- switching resistances will serve to alter
the spike shape. For a MIF circuit with a volatile memristor,
a DC Erest-source is suf�cient to generate spikes under a
suf�cient input current. For instance, under DC current input
of an appropriate magnitude, the MIF circuit, particularly
with locally active memristors [49], can generate oscillatory
spiking signals. If a non-volatile memristor with a negative
reset-voltage is present in the MIF circuit, then a suitable
voltage pulse must be added to the DC Erest-battery to reset
the memristor back to its initial off-state after emitting a
spike. We experimentally demonstrate this need in section
IV. When the membrane potential attains the valueVthreshold,
the memristor sets and turns onto its low-resistance state,
providing the capacitor with a low-resistance pathway for
discharging. However, the resulting progressive decrease of the
membrane voltage V (t) toward a rest level Vrest is insuf�cient
to switch the non-volatile memristor back to its original off-
state condition, unlike for a volatile memristor. In absence
of volatility, a voltage pulse needs to be added to the DC
level Erest to reset the non-volatile memristor, but still no
additional control circuitry is needed on a per-neuron basis.
If a memristor with an S-shaped locally active DC I �V char-
acteristic is used, then both off-to-on and on-to-off resistance
switching phenomena occur under a positive voltage stimulus,
i.e., both the set and reset voltages of this device feature a
positive polarity. We can formulate a state equation for the
MIF model in Fig. 3(a) in terms of the voltage V (t) across
the capacitor C (equivalently, the membrane potential), the
memristor resistance (memristance) RM, the voltage source
Erest, and the input current I (t):

C
V (t)
dt

= �
V (t) � Erest

RM(x, V (t))
+ I (t) (2)

Here, RM(x , V (t)) is a voltage-controlled memristance,
where x represents the internal state of the device. Equation
(3) describes a digital memristive switch (see Fig. 3(b) for an

example of a simple I � V characteristic chosen for simple
analysis). Note that, due to the difference between the device
set and reset thresholds, we denote the memristor set voltage
as Vth1, and the memristor reset voltage as Vth2 in Fig. 3(b).
Furthermore, VM is the potential across the memristor and
Vthreshold is the membrane threshold voltage, which is distinct
from both the memristor set and reset thresholds. The voltage
across the memristor is the difference between the membrane
potential and DC potential VM = V (t)�Erest. As such, we can
state that for the memristor with a simple resistance-switching
I � V characteristic shown in Fig. 3(b),

RM = Roff for Vth2 < VM < Vth1 as VM increases,
RM = Ron for Vth2 < VM < Vth1 as VM decreases. (3)

It should be noted that the constraints in (3) can be stated
in terms of V (t) since V (t) = Erest + VM .

Assuming an initial membrane potential V (0) = Vrest, V (t)
may increase due to an incoming current spike. Accordingly,
VM will increase as long as the memristor state does not
switch. Therefore, while Vrest � V (t) � Vthreshold, for the
case of Fig. 3(b), (2) can be recast as

C
V (t)
dt

= �
V (t) � Erest

Roff
+ I (t). (4)

For simplicity, it is reasonable to approximate the incoming
current function by I (t) = Io[sign(t) � sign(t � TW )]/2,
a rectangular pulse of width TW . For 0 � t � TW , (4) becomes

C
V (t)
dt

= �
V (t) � Erest

Roff
+ I0. (5)

The solution of (5) for 0 � t � TW is

V (t) = Vreste� t
� + (Erest + Roff I0)(1 � e� t

� ) (6)

where � = RoffC . This equation holds true while the memris-
tor remains in the off state: VM < Vth1. We can �nd the time
tclamp required for V (t) to reach Vthreshold by using (6):

tclamp = Roff Cln
� Roff I0 � (Vrest � Erest)

Roff I0 � (Vthreshold � Erest)

�
(7)

For TW > tclamp, V (t) can increase beyond Vthreshold
without resistance-switching. Thus, in the MIF model,
the memristor connected to Erest must switch to Ron at
V (t) = Vthreshold so that V (t) can decrease towards Vrest,
which should counteract the in�uence of any non-zero input
current tail. Equation (2) is valid in the case where the
memristor features linear I � V characteristics for both on
and off states. For nonlinear analog memristors, we use
computer simulation for accurate circuit analysis. We used
the Cadence/Spectre simulator for a detailed analysis of the
MIF circuit with a volatile memristor selector featuring the
nonlinear I � V characteristic shown in Fig. 3(c) [50].

Figure 3(d) shows that as the capacitor voltage V (t) rises
and reaches Vthreshold, the voltage across the memristor VM
reaches the set-voltage Vth1. When the memristor enters the
set-state, RM switches from Roff to Ron. Following this
change, the voltage across the capacitor starts to fall toward
Vrest, initially with time constant RonC , and later RoffC since
Vth2 is non-negative and small in the volatile selector device.
In other words, as the voltage across the memristor VM falls
towards Vth2 close to zero, RM switches back from Ron to
Roff . After I (t) decreases to zero, the membrane potential
settles at Vrest. If a non-volatile memristor is used, then the
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DC Erest-source must be supplemented by simply adding a
reset voltage pulse as will be experimentally demonstrated in
subsequent sections.

Although the selector has nonlinear I �V characteristics, its
Ron and Roff values are approximated to 0.7 M� and 10 M�
for a tractable analysis. For C = 0.1nF, I0 = 20nA, Vthreshold =
�48mV, Vrest = �70mV, and Erest = �70mV, by the equation
in (7) tclamp = 0.12ms is estimated, which is close to the rise
time of V (t) from �70mV to �48mV in Fig. 3(d).

The operation of the MIF model is analyzed by using the
following equations. Initially, the membrane potential V (t) is
at Vrest and the memristor in its Roff state. Upon receiving a
positive input current I (t), V (t) increases with a time constant
of Roff C . When V (t) reaches Vthreshold, the memristor switches
to the on state, the capacitor starts discharging, and V (t)
decreases with a time constant RonC . The relationship between
V (t), the voltage across the memristor VM , and the DC voltage
source Erest is

V (t) = Erest + VM (8)

Assuming a positive set-voltage Vth1 >0, and that the MIF
circuit depolarizes at the time instant when the memristor is
set, V (t) increases to Vthreshold and (8) can be rewritten as

Vthreshold = Erest + VM (9)

For memristance switching to occur, the following limitation
is imposed upon the memristors set voltage Vth1:

Vth1 < Vthreshold � Vrest (10)

For example, with Vthreshold = �48 mV and Erest =
�70 mV, the memristor set voltage Vth1 should be lower
than 22 mV. Alternatively, if a memristor has a set voltage
Vth1 of 20 mV, then for the same Vthreshold = �48 mV,
Erest < �68 mV must be adjusted accordingly, with additional
margins depending on the type of memristor used.

1) Minimality of the MIF Model: The MIF model is uni-
versally minimal in terms of the number of circuit elements
and the integration area because no other model simpler than
the MIF model composed of two passive elements, C and
memristor, and a DC voltage source Erest, can reproduce
a spiking waveform featuring the two voltage levels, Vrest
and Vthreshold. The MIF circuit can also generate oscillatory
spiking signals for a locally active memristor with S-shaped
I-V characteristics under appropriate DC input current.

The MIF model with a locally active memristor can be
driven to switch on and off continually, due to the dynamics
of the membrane potential, thus generating oscillations under
a DC current stimulus. In the MIF circuit, even with a locally
and globally passive memristor, a spiking voltage is generated
by the memristor�s resistance (RM )-switching controlled by
the charge build-up on the capacitor, which raises the mem-
ristor voltage VM to the set-voltage Vth1, and switches RM to
Ron for discharging with a fast time constant. If the memristor
is volatile, it is autonomously reset after its recovery time and
reaches its lowest level Vrest, reducing the memristor voltage
VM to Vrest - Erest allowing the cycle to repeat, with the next
voltage spike generated by the MIF circuit when a subsequent
input current pulse turns the memristor on again. Even when
the input current is DC, the MIF circuit with a locally
active memristor can autonomously generate an oscillatory
spiking output voltage waveform, which is comparable to
the generalized LIF model with additional control circuitry

Fig. 4. The memristive integrate-and-�re neuron model: version 2. (a) MIF2
model with two memristors and two DC voltage sources. Erest and Ereset
correspond to ENa and EK in Fig. 1(a), respectively. (b) An illustration of
the MIF2 circuit, in which V controls the resistance of both memristors.
(c) Spectre simulation results using the model from Fig. 3. (d) Spectre
simulation after tuning the MIF2 model parameters.

depicted in Fig. 2(d). It should be noted that the MIF circuit
does not require any additional control circuit. For instance,
in the neuristor, featuring a topology based on the MIF circuit,
the use of a locally active memristor with S-shaped IM � VM
characteristics has been used for the generation of oscillatory
spikes under DC input current [47].

When a non-volatile memristor is used, as explained earlier,
the DC Erest-source must be supplemented at an appropriate
time instant by an additive narrow voltage pulse of negative
amplitude with a magnitude larger than |Vth2|, where Vth2 is
the negative reset-voltage of the non-volatile memristor. This
point will be illustrated later through an experimental veri�ca-
tion. No simpler circuit can produce such an action potential.
Prior works require circuits with much more complex circuitry.
Furthermore, a memristor consumes a smaller layout area as
compared to a large resistor (Fig. 2(a)).

B. MIF2 Neuristor
In the typical waveform of the action potential from

Fig. 1(c), the action potential V (t) starts at Vrest, rises to
Vthreshold, resets to Vreset < Vrest, and settles at Vrest. It tra-
verses three critical voltage levels. The need for a sub-rest
voltage level stems from the refractory period during neuronal
information transmission. Hyperpolarization suppresses the
impact of an incoming stimulus to the neuron during the
refractory period, and by driving the neuron to a voltage below
the rest potential, it effectively raises the relative threshold,
which the membrane capacitance voltage needs to attain
for the generation of an action potential. While this may
seem counterproductive, it prevents any stimulus already sent
through the axon from triggering a backpropagating action
potential to the neuron body. Therefore, hyperpolarization
assures unidirectional signal transmission.

The MIF model in Fig. 3(a) cannot simulate all three
transitions between Vrest, Vthreshold and Vreset. Another voltage
source Ereset is required. Therefore, we propose the MIF2
model shown in Fig. 4(a-b). The use of a second mem-
ristor in series with a DC voltage source Ereset is derived
from circuit-theoretic analysis and area density considerations.
The MIF2 circuit is experimentally veri�ed in the follow-
ing sections, which demonstrates the generality of the new
memristor-based neuron design.
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TABLE I
PHASE TRANSITIONS OF THE TWO MEMRISTORS

Topologically, the model is identical to the reduced HH
model in Fig. 1(b) with GL = 0 S [33]. The two DC voltage
sources, Erest and Ereset, correspond to the ENa and EK voltage
sources in the HH model. The current paths through the two
memristors correspond to the GK and GNa channels in the
HH model. In this regard, the MIF2 circuit can be considered
a macro-model of the reduced HH model. This observation
is consistent with the sequential opening of voltage-gated
Na+ and K+ channels during action potential generation [51].
To summarize, the MIF2 circuit is devised so as to accurately
reproduce the analog waveform of an action potential, and
to capture the main mechanisms behind the generation of a
biological neuronal spike.

The following equation describes the MIF2 model, where
RM1 and RM2 denote the resistances of the memristors con-
nected to Erest and Ereset, respectively:

C
V (t)
dt

= �
V (t) � Erest

RM1(x1, V (t))
�

V (t) � Ereset

RM2(x2, V (t))
+ I (t). (11)

Equation (11) is valid through each of the three phases of
action potential waveform. As V (t) goes through different
stages, the state xi, j=1,2 of one of the two memristors may
change accordingly. The key transitions in the capacitor volt-
age are: (1) Vrest � Vthreshold, (2) Vthreshold � Vreset, and (3)
Vreset � Vrest. In each phase of the waveform V (t) shown in
Fig. 4(c) and (d), memristor M1 (M2) may switch between the
off-resistance state and the on-resistance state, depending upon
the bias voltage across it, i.e., the difference between V (t)
and the DC voltage level Erest (Ereset). Table I summarizes
the state changes of the two memristors. To transition to the
resting state, M1 must be on to pull-up the potential by Erest.

An intuitive description of the operation is as follows.
Assume M1 and M2 are both initially off. For the transition at
S0, an input current injection I (t) is applied, causing charge
to build up on the capacitor. For a suf�ciently large input, the
voltage will reach the peak of the action potential which is
also the point at which M2 switches on. Note that the reset
potential is more negative than the rest potential, which means
the voltage drop across M2 is greater than that across M1. For
identical memristors, M2 will switch on �rst. This provides
a low resistance pathway for the capacitor discharge. Thus,
V (t) will suddenly drop toward Ereset. This corresponds to the
transition phase associated to the switching state S1. If M2 is a
volatile memristor, then it will autonomously turn off causing
V (t) to relax back to the same value as in S0, which can
be set to approximately Erest if RM1 � RM2. Alternatively,
as in our experiments, M2 may be a non-volatile memristor.
A step pulse would then be applied at Ereset, causing M2 to
switch off which has the same effect. This corresponds to
the evolution along the transition phase S2. After the peak
potential at Vthreshold the membrane potential hyperpolarizes
down to Vreset. At reset, the membrane potential Vreset is
constrained by the DC reset potential Ereset and the potential
VM2 across the memristor M2:

V (t) = Vreset = Ereset + VM2 (12)

For the memristor M2 to reset, the voltage across it must
be less than Vth2. Thus, the following constraint is imposed:

Vth2 > Vreset � Ereset (13)

In the next phase, the membrane potential rises toward
Vrest from Vreset. The memristor M2, connected to the voltage
source Ereset, is off (RM2 = Roff ), which prevents M2 from
blocking the pull-up effort from M1 to raise V (t) toward Erest.

An autonomous spiking behaviour can be achieved using
volatile memristors appropriately biased via DC voltage
sources and choosing a proper value for the membrane capac-
itance. Analytical expressions in the form of (6)�(7) can be
derived for the MIF2 circuit with piecewise linear segments,
but for analysis with more realistic nonlinear I � V charac-
teristics, Cadence/Spectre simulation is used. The simulation
results are shown in Fig. 4(c). V (t) rises to the peak value,
dips to Vreset, and then rises to Vrest, which is behaviorally
correct. As qualitatively described earlier, in its dynamical
evolution V (t) goes through three distinct voltage levels,
namely Vthreshold, Vreset, and Vrest, as governed by the resis-
tance switching phenomena occurring in the two memristors,
and indicated in Fig. 4(c) by S0, S1, S2, de�ned in Table I to
denote the memristors� resistance states along the three distinct
transition phases of the membrane capacitance voltage.

Some circuit parameters can be tuned to slow down the
phase transitions of the capacitor voltage V (t), as shown in
Fig. 4(d), which displays a spiking voltage waveform strik-
ingly similar to that in Fig. 1(c). In this case, the memristor
M1 remained in the off state at all times. For the case using
non-volatile memristors in the MIF2 circuit, a narrow voltage
pulse should be added to the voltage source Ereset. This will
be discussed in the experimental section. Fig. 4(d) shows
simulation results of the MIF2 circuit for the case where
M1 and M2 are identical volatile memristors. The two DC
voltage sources can be tuned to mimic the action potential
waveform closely. Setting Ereset and Erest to �80 mV and
�65 mV, respectively, the membrane potential displayed a rest
potential of �72.5 mV, and a reset potential of �80 mV. For
Vthreshold = �52 mV, the memristor M1, connected serially to
the Erest-battery, remains in the off-state.

1) Minimality of the MIF2 Model: The MIF2 model con-
sisting of one capacitor, and two memristors M1 and M2,
connected to DC voltage sources Erest and Ereset, respectively,
is minimal in terms of number of circuit elements and inte-
gration area in generating a spiking neuronal signal waveform
with three voltage levels, specifically Vrest, Vthreshold, and Vreset.
The MIF2 circuit with locally active memristors can generate
oscillatory spiking signals under sufficient DC input current.

The MIF2 model resembles the memristive HH model with
battery-driven sodium and potassium ion channels. The MIF2
circuit is topologically equivalent to the reduced memristive
HH model when compared to Fig. 1(a), neglecting leakage
terms [33]. The DC voltage sources, Erest and Ereset, in the
MIF2 circuit represent the rest and reset potentials, and
correspond to the batteries ENa and EK in the HH model.
Previously, it was shown that for the generation of a membrane
potential waveform which does not dip to Vreset, the proposed
MIF circuit in Fig. 3(a) is minimal in terms of number of
circuit elements and integration area. To model hyperpolariza-
tion, the inclusion of an additional battery-driven memristive
pathway is necessary. Otherwise, the drop to the Vreset level
cannot be replicated without external control circuitry [34].
Although a resistor may be chosen in lieu of a memristor

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 29,2021 at 22:09:26 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KANG et al.: HOW TO BUILD MEMRISTIVE INTEGRATE-AND-FIRE MODEL FOR SPIKING NEURONAL SIGNAL GENERATION 7

Fig. 5. Experimental results of the MIF2 circuit using Knowm memristors.
(a) MIF2 circuit, including a parallel path with a voltage source and its
series resistance providing the stimulus current (I (t) in Fig. 4(a)). (b) I � V
characteristics of the Knowm memristor used for experimental veri�cation
of the MIF2 model. (c) Measured action potential waveform of the MIF2
circuit. The action potential signal corresponds to membrane potential V (t).
(d) Time evolution of the resistances of memristors, RM1 and RM2, during
action potential generation.

to generate a new voltage level, such a choice may not
preserve the MIF2 minimality in terms of integration area,
and furthermore, does not allow the replication of the I � V
characteristic of the reset memristive path with an AC driving
stimulus, which is a signature peculiar to resistance switching
memories. The two memristors in the MIF2 model can be
volatile or non-volatile. The Erest and Ereset sources can be
purely DC for the case of volatile memristors. If a non-volatile
memristor is used as M2, a reset pulse must be added to Ereset.
This point will be further described in the next experimental
section where commercially available, non-volatile memristors
are used to emulate spiking neuronal signal generation.

IV. EXPERIMENTAL RESULTS

We �rst show our experimental results using low-cost
commercially available Knowm memristors to demonstrate
generality. Although alternative devices may be better suited
for use in the MIF family of neuron models, the Knowm
devices are selected due to their accessibility.

A. Experimental Setup
Our experimental setup used Knowm memristors with a

tungsten W + Ge2Se3 active layer in discrete form. The values
of Ron and Roff were measured to be 22 k� and 320 k�,
while Vth1 = 0.28 V and Vth2 = �0.2 V at room temperature.
This memristor exhibited non-volatility within the timescales
of the experiment. Two memristors from the same batch, with
the IM � VM characteristic curve shown in Fig. 5(b), were
adopted for testing the MIF2 circuit in Fig. 5(a) under an
input voltage pulse VS of width TW connected in series with
a source resistor Rs , in lieu of an ideal current source. Under
this stimulus, the membrane potential V (t) starts from Vrest
and increases to Vthreshold within a period of tclamp, and then

falls to Vreset within a period of tfall as shown in Fig. 5(c). The
time evolution of the resistances of each of the two memristors
is depicted in Fig. 5(d), showing how the resistance of M2
�uctuates around the constant resistance of M1. The voltage
across the memristor M1, V (t)� Erest, should be such that M1
remains in its off state, which imposes a constraint on the value
of Vthreshold. The state equation of the MIF2 circuit in Fig. 5(a),
where the current in (11) is derived out of the equivalent
voltage-driven Thevenin circuit, shown in (14). From the time
instant when V (t) is equal to Vrest until the time instant when
V (t) is equal to Vthreshold, the resistance of M2 is R2off and
the resistance of M1 is R1off , VS has a magnitude of Vsp, thus
the circuit equation becomes

C
V (t)
dt

= �
V (t) � Erest

R1off
�

V (t) � Ereset

R2off
+

Vsp � V (t)
RS

(14)

Equation (14) can be solved to �nd tclamp as

tclamp = Req1Cln
� Vf1 � Vrest

Vf1 � Vthreshold

�
(15)

Vf1 = Req1

� Vsp

RS
+

Ereset

R2off

�
and

1
Req1

=
1
RS

+
1

R1off
+

1
R2off

(16)

Req1 is the equivalent resistance of three resistors in parallel
as shown in (16), Vsp is the peak voltage value of the voltage
source VS (+0.8V), Vf1 is the steady state membrane potential
V (t) when the voltage source peak value Vsp is sustained for
a long duration, and Ereset = �0.60 V. Through a �tting
procedure using the measured values for the reset and set
membrane capacitance voltages Vrest and Vreset, we determined
the effective resistance values of the memristors in operation
as: R1off = 264k�, R2off = 307k�, R2on = 9.8k�. These
values are not exactly same as the values measured in the
stand-alone devices.

B. Experimental Analysis of the MIF2 Circuit
Fig. 5(c) shows the measured action potential waveform of

the MIF2 circuit employing two memristors with measured
IM � VM characteristics as shown in Fig. 5(b) and driven by
a voltage source in series with a resistor.

Although not identical to the simulated result in Fig. 4(c�d),
the action potential waveform displays 3 distinct voltage lev-
els: Vrest, Vthreshold, and Vreset. An overshoot can be observed
during the reset pulse before V (t) settles to Vrest. An analysis
is provided below on how this overshoot can be removed
by tuning ad hoc circuit parameters. Fig. 6(a) illustrates the
time course of the membrane capacitance voltage, which
exhibits an overshoot as a reset pulse of amplitude Ereset�p
is superimposed on the Ereset level. The overshoot is observed
during the time interval when the reset pulse allows to restore
M2 to the off sate. Here, M1 was found to remain in its off
state at all times. The recovery time, trec, represents the time
interval between the instant tA at which the action potential
starts to rise from the reset voltage level, i.e., the instant which
the reset pulse-based stimulation of M2 commences, and the
instant tB at which the action potential attains the rest voltage
level. In order to suppress the overshoot in the membrane
capacitance voltage during the pulse stimulation, which resets
to M2, the recovery time should be smaller than an upper
bound, as computed via (17)�(19). Ereset�p denotes the reset
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Fig. 6. LTSpice simulation of the MIF2 circuit using the Knowm memristor
model. (a) Time waveforms of Ereset , VS , V (t). In the event the pulse VS
(Ereset) is in�nitely long, the temporal trace, which V (t) would exhibit after
such AC stimulus, would rise asymptotically to V f 1 (V f 2). (b) Removal of
the overshoot in V (t) with larger capacitance (10 nF vs. 1 nF) and source
voltage (4 V vs. 0.8 V). (c) Graphical indication of tA and tB on the time
axis in an enlarged view of plot (b) over the phase when M2 is reset to the
off state.

pulse amplitude. Note that in (17) and (19), R2off is replaced
with R2on to account for the off-to-on state transition induced
in M2 by the pulse amplitude Ereset�p superimposed on the
baseline of the signal generated by the source Ereset.

C
V (t)
dt

= �
V (t) � Erest

R1off
�

V (t) � Ereset

R2on
+

VS � V (t)
RS

(17)

trec � tB � tA = Req2C ln
V f 2 � Vreset

V f 2 � Vrest
(18)

1
Req2

=
1
RS

+
1

R1of f
+

1
R2on

;

V f 2 = Req2

� VS

RS
+

Erest

R1o f f
+

Ereset�p

R2on

�
(19)

where Req2 is the equivalent resistance of three parallel
resistors, speci�cally RS , RM1, and RM2, when Ereset(t) =
Ereset�p, Vf2 is the level the membrane capacitance voltage
V (t) would attain asymptotically if Ereset was held equal to
Ereset�p = 0.20 V for all time after tA. The input source
voltage VS is set at �0.50 V. To remove the overshoot in
V (t) during the procedure implemented to reset M2, we can
increase both the capacitance and the amplitude of the pulse
superimposed on the baseline of the voltage source VS to
allow the transition of the membrane capacitance voltage from
Vrest to Vthreshold. The simulation result shown in Fig. 6(b)
with a larger capacitance (10nF) and a higher value assigned
to VS during the transition of V (t) from Vrest to Vthreshold
(4 V) results in the complete suppression of the overshoot in
the membrane capacitance voltage. The maximum allowable
recovery time to suppress the voltage overshoot is calculated

TABLE II
IMPACT OF THE VOLATILE MEMRISTOR DEVICE VARIABILITY ON THE

RESET AND REST DYNAMICS OF THE MEMBRANE CAPACITANCE
VOLTAGE IN THE MIF2 NEURISTOR (SECTION III.B)

using (18), and amounts to 10.9 µs, which is comparable to
the LTspice-simulated value of 14.8 µs in Fig. 6(c).

In summary, we have experimentally veri�ed that the MIF2
circuit allows the use of non-volatile memristors to gener-
ate action potential waveforms. To overcome the dif�culties
caused by the negative reset transition voltage in non-volatile
memristors, the DC Ereset source is complemented with a
pulse so that the combined voltage enables a transition of
the membrane capacitance voltage V (t) from Vreset to Vrest.
Taking safe margins, the pulse amplitude should be chosen
larger than the difference between Vthreshold and the sum of
Vth2 and the DC component of Ereset. This amplitude level
needs to be sustained for a brief, but suf�cient time, to enable
the memristor M2 to turn off (on the order of 10µs in our
experiments), allowing V (t) to attain the Vrest level before the
next cycle may begin. The action potential, measured from the
hardware prototype, features three noticeably distinct voltage
levels, as shown in Fig. 5(c). Though it exhibits an overshoot
phenomenon, the method for suppression that accompanies the
reset procedure of M2 has been detailed above.

C. Statistical Variation of Knowm Memristors
Another important consideration is the effect of statistical

variation in key memristor parameters Ron, Roff , Vth1 and
Vth2 on action potential signal generation. Statistical variations
of –20% were applied to these memristor parameters to
explore the impact on the performances of the MIF2 elec-
tronic neuron model discussed in section III-B and IV, and
employing volatile and non-volatile memristors, respectively.
treset and treset are used as measures of the performance of
the MIF2 neuristor from section III-B. Here, treset is the time
it takes for V (t) to descend from Vthreshold to Vreset, while
trest denotes the time it takes for V (t) to rise from Vreset up
to the level amounting to 0.9 • (Vrest � Vreset). The impact
of parameter variance using volatile memristors on set/reset
variation is shown in Table II. Vrest � Vreset, the difference
between the rest potential and the reset potential, is used
as the measure of performance for the MIF2 neuristor with
non-volatile memristors in Section IV, because the timing in
the various phases, which the capacitance membrane potential
undergoes during each spiking cycle, is dictated by the time
waveforms of the voltage stimuli VS and Ereset. The impact of
the device variability on the performance of the MIF2 circuit
with non-volatile memristors may be inferred from Table III.

V. DISCUSSION AND ANALYSIS

The pursuit for VLSI implementation of spiking neural
networks dates back to Mead�s early work [1] and has been
expanded since then [52]. A highly compact physical imple-
mentation of the LIF neuron model was introduced by using a
multitude of MOSFETs, resistors, and SCRs [53]. This section
focuses on the most compact physical realization of the MIF
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TABLE III
IMPACT OF THE NON-VOLATILE KNOWM MEMRISTOR VARIABILITY ON

THE RESET AND REST DYNAMICS OF THE MEMBRANE CAPACITANCE
VOLTAGE IN THE MIF2 NEURISTOR (SECTION IV)

circuit model from Fig. 3(a) as well as its extension, the
MIF2 circuit, from Fig. 4(a). As discussed earlier, the use of
nanoscale memristors as neuristors allows the highest packing
density in analog spiking neural network implementations as
opposed to the use of resistors and other complex switching
circuitry. Moreover, the impact of stimuli rate on the memris-
tive dynamics in the proposed MIF and MIF2 neuron models
cannot be reproduced if the memristors are replaced with
resistors. Interestingly, our parameter sweep analysis shows
that the memristor on and off resistance variability, which is
typically the most critical source of concern, does not have a
signi�cant effect on cycle-to-cycle variability in the membrane
capacitance voltage. On the other hand, the reset and rest times
are highly sensitive to the threshold voltage Vth1. This provides
insight to device researchers that reducing the variability in
the set threshold voltage Vth1 of either volatile or non-volatile
memristors may prove to be the decisive factor improving
the cycle-to-cycle repeatability of the dynamical phenomena
emerging in neuristors.

A. VLSI Implementation of a Memristive Solid-State Brain
An idealization of the neuron is shown in Fig. 7(a) as part

of a general network representation [54]. A layout of the MIF2
neuron with a fan-out of three synapses is shown in Fig. 7(b).
The vertical metal line has a �nite bit-line capacitance Cbit.
This vertical line also sources the input current I1.

The resulting potential along the vertical line is the mem-
brane capacitance voltage Vc1 of the MIF2 neuristor. Mrest1 is
the memristor in series with Erest, while M1� j , j = 2, 3, 4,
is the synaptic memristor between the axon terminal connected
to neuron 1 and the j th post-synaptic neuron, not shown
here. Memristors are formed vertically at the cross-points. This
layout shows that the entire neuronal network in Fig. 7(a) can
be laid out in a single column, thus taking up a small area,
which translates into a high on-chip packing density. More
complex neural networks can be implemented in a vertically
stacked 3D structure as in the brain. For the layout of the MIF2
circuit, a thin horizontal line for Ereset is inserted next to the
Erest-line, or vertically above it. It is possible to level-shift both
DC sources such that one is �xed to ground to reduce biasing
requirements [44], [55]. The voltage difference between the
two sources can give rise to second-order effects that act
on longer time scales than action potentials, such as spike
frequency adaptation. While it introduces additional overhead,
sharing biases across neurons can allow the MIF and MIF2
circuits to draw advantages from continued scaling. In the
following sub-sections, a simple analysis of a solid-state brain
composed of MIF neuristors, in terms of surface area and
power consumption will be presented.

Emulating biological neurons with a high fan-out in silicon
has been a long-standing challenge over the past few decades.

TABLE IV
MEMRISTIVE NEURON COMPARISON

The large capacitive loading of the op amps employed in
the neuron circuits reduces their slew rate, although is not
a major issue where phenomena acting over slow biological
timescales are reproduced. Rather, the most critical issue is
signal attenuation. As an example of a neuronal circuit with
high fan-out, we have simulated an arti�cial neural network
consisting of three layers of MIF2 neuristors connected one
to the other via synapses. The circuit topology is shown in
Fig. 7(e), where RI = 0.1K� and Rsyn,a�b = 1K� where
a � b = {1 � 2, 2 � 3}. For simplicity, we use a linear resistor
in place for the synapses. The second layer is set to drive 30
neurons through synaptic connections, which are preceded by
a voltage follower used to buffer the spike coming from the
single pre-synaptic MIF2 neuristor. The follower is effectively
used as a voltage-controlled voltage-source (VCVS), which
mimics the chemically-driven propagation of an action poten-
tial along the axon of the pre-synaptic MIF2 neuristor [51].

SPICE simulations of the MIF2 neuristor-based fully-
connected network without buffering is shown in Fig. 7(c).
Signal attenuation in the deeper layer is drastic, which moti-
vates the decoupling of the intermediate MIF2 circuit from
the 30 neuristors it is synaptically connected to using a buffer.
In many spiking networks, the spike timing rather than its
waveform is the mechanism for neural encoding. In such
cases, a simple digital spike read out circuit which would
be typically implemented by a current-mode sense ampli�er
(or alternatively, with an ad hoc arrangement of cross-coupled
inverters) [60]. However, in case the spike analog waveform
encoded neural information, its propagation to a large number
of post-synaptic neurons would require a buffer, as shown
in the illustrative example of Fig. 7(e), the simulation of
which is depicted in Fig. 7(d). Signal integrity is maintained
through 3 layers of MIF2 neurons, even without buffering
between the �rst and second layers. The total dynamic power
of the network of Fig. 7(e) is shown with the dashed line in
Fig. 7(c). The capacitance of each neuron�s capacitor is 1 pF.
The total energy dissipated in the network is 436 pJ, which
corresponds to an energy per neuron of 12.8 pJ, and power
consumption per neuron of 12.8 pW under 1 Hz operation as
the network uses 34 neurons. The buffer consumes 164 pW
(4.82 pW/neuron), which is 38% of the total power consumed
by the network. A performance comparison between the pro-
posed MIF and MIF2 neuron designs and other key memristive
neuron designs is provided in Table IV.

The number of elements refers to those that are unshared
across neurons, with those in parentheses including the DC
sources of the MIF and MIF2 neurons. Refractory period
refers to whether the neuristor has a depolarization (or some
other homeostatic) mechanism driving the membrane potential
below the resting state. The reset mechanism refers to whether
a membrane potential reset has been included to drive the
neuron back to its resting potential, such as switching M2 off
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Fig. 7. Neural network implementation using the MIF2 model and synaptic resistors (Rsyn1�2 and Rsyn2�3). (a) A simple neuronal network with both
fan-in and fan-out equal to three each. (b) Layout of the neuronal network in (a). Vc1 is the voltage across the membrane capacitance in the MIF2 circuit
excited by I1. I2�4 are the fan-out currents of the neuron circuit. (c) Simulation result of (e) without buffering, showing that loading from subsequent stages
attenuates the spike amplitude. V [1], V [2], and V [3] denote the output voltage of each subsequent stage, i.e., the 1st, 2nd and 3rd neural layer, respectively.
(d) Simulation results of (e) with buffering showing that high fan-outs are possible due to the high input/low output impedance of the voltage follower.
(e) Circuit topology of MIF2-based neuronal network with a high fan-out of 30 using a voltage follower interposed between neurons and synapses which
maintains signal integrity. Each synapse Rsyn,2�3 shares the left terminal only. A voltage buffer is necessary for large fan-out, as is depicted in the third MIF
stage. In the brain, each neuron may have a fan-out of anywhere from 1,000�10,000, which would demand buffers between all stages.

in the MIF2 circuit with non-volatile memristors (section IV).
We estimated the energy consumed by a neuron per spike,
and several other power consumption metrics, on the basis
of the data provided in [47] and [44]. A row with label �not
applicable (NA)� refers to a neuristor design which did not
include the performance measure.

Additionally, if we consider the design of a sparsely con-
nected spiking neural network, a typical neuron has a similar
number of input and output synaptic connections, which
creates balanced fan-in and fan-out characteristics. Taking into
account the relatively low frequency spiking nature of neurons,
the necessary buffer circuitry has relaxed design considerations
to ensure signal integrity through a deep network.

B. Brain vs. Memristive Solid-State Implementation: Surface
Area Comparison

In view of a future implementation of a solid-state brain
composed of MIF2 neurons, synapses, and interconnects, this
section benchmarks its surface area against the human brain
counterpart [61].

� Number of neurons = 1011

� Number of synapses = 1014 � 1015

� Median surface area = 2,400cm2

� Median volume = 1,050 cm3

Fig. 7(b) indicates that each neuron and each synapse can
be laid out using the same area, amounting to 4F2, where F
represents the minimum feature size for the width of horizontal
and vertical lines used in the crossbar array. For instance,
at the 5nm fabrication technology node (F = 5nm) with
minimum pitch of 2F , an area of 4F2 is required for a
neuron or a synapse. Based on state-of-the-art reports on VLSI
implementations of neuromorphic circuits, it can be conserv-
atively assumed that, due to hardware overhead necessary to
accommodate interconnects, sensing and peripheral circuitry,
as well as to meet additional requirements, the area allocated to
each neuron and synapse is set to 5•4F2 [62], [63]. Thus, each
instance of a neuron or a synapse has an area of 20F2 allocated
on chip as a conservative estimate. In a simple estimation, the

total area required to realize all neurons, synapses, DC voltage
source lines, and ground lines, in a future realization of a
memristive solid-state brain, is:

� Area = 20F2× (1011 + 1015)
� For F = 5nm, the area required would be: 20 ×

(5 × 10�9)2 × (1011 + 1015) = 5,000cm2

By comparison, physiologically, the median surface area of
the brain is 2,400cm2, which is smaller by a factor of 2.1.
On the other hand, with F = 3.5nm, the surface area of the
human brain and of its envisioned solid-state implementation
become approximately the same. Thus, memristor technology
integrated through a fabrication process with an aggressive
scaling target, can potentially enable the circuit realization
of a solid-state brain within a surface area equivalent to the
biological human brain one. If the need for more complex
circuitry demanded the availability of additional chip area,
multiple stacked layers could be used so as to prevent any
further enlargement of the surface area. Since the biological
brain has a 3D structure, the memristive solid-state brain can
also be constructed vertically across a dozen stacked layers,
stretching across a thickness of approximately 0.3 cm, close
to the physiological thickness of the median cortical sheet,
in which 1,050cm3 / 2,400cm2 = 0.44 cm.

C. Brain vs. Memristive Solid-State Implementation: Power
Comparison

This section benchmarks the power consumption of the
memristive solid-state brain against the human brain coun-
terpart. With reference to the arti�cial realization, we need to
evaluate the power of each neuristor, of each synaptic element,
and of each wire connecting any two components in each layer.
Considering MIF neurons for simplicity, the average power
consumption per neuron can be estimated as follows. First, the
average power dissipated in the MIF circuit as the capacitance
membrane potential V (t) builds up from Vrest to Vthreshold over
the charge-up period tclamp is computed via

Pclamp =
1

tclamp

� tclamp

0
I (t)V (t)dt (20)
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It is estimated that the human brain, composed of about
1011 neurons and 1015 synapses, consumes a power oscillating
between 12 and 20 W [64]. An order of magnitude for
the power dissipated by the brain may be estimated through
the following formula, in which n represents the number of
synapses per neuron:

Pbrain = Nneurons × n × Vspikes × Ispike × Tperiod × fspike

= 1011neurons × 104syn/neuron × 10�1V
× 10�10A × 10�3sec × 1Hz

= 10W (21)

More precisely, calculations based on caloric intake place
the upper ceiling estimate at 23.3W [65], and the �oor estimate
at 12.6W [66], which leads to the often-cited 20W value for
the human brain power. A simple calculation of the power
consumed per spike by each neuron or synapse gives Pn
= 10fW. With reference to section III.A, in order for a
MIF circuit to consume a power per spike with an order of
magnitude of fW, a small value, in the pA range, needs to be
assigned to I0. The current can be increased signi�cantly if
the brain power is assumed to depend mainly on the neuron
power consumption. Then, the power budget per neuron can
be increased by a few orders of magnitude.

As an illustrative example, let us set the MIF circuit
parameters as follows: Roff = 50 G�, C = 0.1 pF, Erest =
�70mV, Vrest = �60mV, Vthreshold = 30mV, and I0 = 2.5pA.
We �nd � = RoffC = 5ms and tclamp = 7.63 ms from (7).

In a simpler analysis to be used next, with V (t) approx-
imated using a triangular function, Pclamp can be estimated
via

Pclamp = I0
Vthreshold � Vrest

2
, (22)

which is then numerically evaluated as 2.5pA × 0.5(30 +
60) mV = 112.5fW. The average power Pdischarge dissipated
by the MIF circuit as the capacitance membrane voltage V (t)
descends from Vthreshold back to Vrest would be smaller than
Pclamp by at least one order of magnitude, since the memristor
resistance is Ron during the capacitance discharge phase, and
Ron is lower than Roff by at least one order of magnitude.
Thus, the average power consumption Pn of the MIF neuristor
over the temporal duration Tperiod of one action potential is

Pn = Pclamp(1 + Ron/Roff)tclamp/Tperiod (23)

For the above example, if the temporal duration Tperiod of
one action potential is 20 ms, and Ron/Roff = 0.01, then by
(23), Pn = 112.5fW × (1 + 0.01) × (7.63 ms / 20 ms) =
47.2 fW.

In practice, non-volatile memristors are often used to emu-
late synapses, while volatile devices with �nite relaxation
times are employed to emulate neurons. The total energy
consumption per spike reported for the volatile memristor
from [45] is approximately 50 fJ, which is comparable to the
energy budget per action potential in a biological neuron [67].
If it is assumed that the average neuron �ring rate is 1 Hz [68],
then the total power consumed by the volatile memristor-based
neuristor from [45] per spike is 50 fW, which closely matches
the 47.2 fW value calculated from (23).

Let us now set the MIF circuit parameters as follows: Roff
= 50 M�, C = 10 pF, Erest = �70 mV, Vrest = �60 mV,
Vthreshold = 30 mV, and I0 = 2.5 nA. We would then obtain
� = 0.5 ms, and tclamp = 0.763 ms. From (22), it would

thus be Pclamp = 112.5 pW. Equation (23) would �nally give
Pn = 112.5 pW × 0.763 ms / 20 ms = 4.29 pW, which is
higher by two orders of magnitude with respect to its value
in the previous case, where I0 was lower by three orders of
magnitude. However, if neurons are assumed to dominate the
power consumption, then a nA-range current for I0 in the MIF
circuit from section III.A would be considered reasonable.
It can be stated that

Pn = f (I0, C, Ron, Roff , Erest, Ereset, Vrest, Vthreshold).

To reduce power consumption, the voltage swing Vthreshold �
Vrest should be kept small. Roff I0 can be lowered accordingly,
allowing a smaller I0. This observation is useful for the design
of memristive spiking neural networks, especially to specify
memristor parameters (Ron, Roff , Vth1, and Vth2).

If all neurons are assumed to spike within a same temporal
window of width Tperiod = 20 ms, then the total power
consumption of neurons and synapses per spike period, Pn&s ,
can be estimated via

Pn&s = 47.2 × 10�15(1011 + 1015)W � 47.2W,

and therefore, the total energy En&s consumed by neurons and
synapses per spike period Tperiod would amount to 47.2 W ×
20 ms = 944 mJ.

The power consumed by neurons and synapses is estimated
to be about 2/3 of the total brain power, while about half of
Pn&s is consumed by interconnects. Thus, when all neurons
and synapses are assumed to spike within a single window of
period Tperiod, it is reasonable to compute the resulting power
consumption PBrain in the brain, where neurons emit a spike
with an average probability of around 30%, as

PBrain = 0.3 × 1.5Pn&s

= 21.2W,

which falls in the typical ballpark of 20 W.

VI. CONCLUSION

The introduction of the MIF and MIF2 neuron circuits is
poised to enable the future hardware realization of disrup-
tive bio-inspired spiking neural networks, featuring surface
and volume dimensions and operating under power budgets
comparable to the corresponding characteristics of a human
brain, which displays a median surface area of 2,400 cm2,
a median volume of 1,050 cm3, and consumes about 20W
of power. Importantly, the proposed neuristor circuit-theoretic
models, are general. In fact, the single (two) passive mem-
ristor (memristors) employed in the proposed MIF (MIF2)
neuristor may be either volatile or non-volatile. The MIF2
neuristor and the reduced memristive Hodgkin-Huxley cir-
cuit [7] are topologically equivalent, and their parameters are
physiologically comparable. The operating mechanisms of the
MIF (MIF2) circuit are critically dependent upon the resistance
switching phenomena emerging in its non-volatile or volatile
memristor (memristors). As a result, the memristor fabrication
process needs to be optimized toward the production of
devices with stable off and on resistances and well-de�ned
set and reset voltages. The variability of the memristor set
threshold voltage proves to be the undesired effect, and is
most deleterious to cycle-to-cycle repeatability of the action
potential generation dynamics in the MIF2 circuit with either
volatile or non-volatile resistance switching memories.
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In case one (two) volatile and locally-active memristor(s)
are employed in the MIF(2) circuit design, the resulting neuris-
tor may even undergo sustained spiking oscillations under a
DC input current of appropriate value. On the other hand, if a
non-volatile memristor is employed in the design of either
neuristor, an ad hoc pulse destabilization of the associated
circuit over an appropriate time window triggers a train of
action potentials across the membrane capacitance.

A hardware demonstration using off-the-shelf components,
including a volatile memristor selector (two non-volatile
Knowm resistance switching memories) showed that the MIF
(MIF2) neuristor may generate spiking neuronal signals of
similar shape as a biological neuron in the human brain.
As shown through the analysis of a crossbar-based layout
for coupling neurons via synapses, on-chip neural networks
can be laid out compactly. It is estimated that, leveraging
a 3.5 nm fabrication technology node, an entire solid-state
brain, based upon a multi-layer memristive crossbar, could be
laid out across a surface area and feature a vertical thickness
comparable to the human brain median sizes.

The manuscript is concluded with a systematic estimation of
the spiking power of a solid-state brain with MIF neuristors.
With some simplifying assumptions, the total power, which
the memristive brain is expected to dissipate, falls within the
20 W ballpark, which is frequently cited in the literature.
The future realization of a memristive solid-state brain shall
offer a tantalizing opportunity for further advancements in
nanoscale memristor fabrication technologies. It will also pave
the way toward the deployment of innovative brain-like com-
puting machines with unprecedented performance capabilities
in electronics, toward overcoming the modern challenges of
large-scale data processing systems.
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