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Abstract—The advent of dedicated Deep Learning (DL) ac-
celerators and neuromorphic processors has brought on new
opportunities for applying both Deep and Spiking Neural Net-
work (SNN) algorithms to healthcare and biomedical appli-
cations at the edge. This can facilitate the advancement of
medical Internet of Things (IoT) systems and Point of Care
(PoC) devices. In this paper, we provide a tutorial describing
how various technologies including emerging memristive devices,
Field Programmable Gate Arrays (FPGAs), and Complementary
Metal Oxide Semiconductor (CMOS) can be used to develop
efficient DL accelerators to solve a wide variety of diagnostic,
pattern recognition, and signal processing problems in healthcare.
Furthermore, we explore how spiking neuromorphic processors
can complement their DL counterparts for processing biomedical
signals. The tutorial is augmented with case studies of the vast
literature on neural network and neuromorphic hardware as
applied to the healthcare domain. We benchmark various hard-
ware platforms by performing a sensor fusion signal processing
task combining electromyography (EMG) signals with computer
vision. Comparisons are made between dedicated neuromorphic
processors and embedded AI accelerators in terms of inference la-
tency and energy. Finally, we provide our analysis of the field and
share a perspective on the advantages, disadvantages, challenges,
and opportunities that various accelerators and neuromorphic
processors introduce to healthcare and biomedical domains.

Index Terms—Spiking Neural Networks, Deep Neural Net-
works, Neuromorphic Hardware, CMOS, Memristor, FPGA,
RRAM, Healthcare, Medical IoT, Point-of-Care

I. INTRODUCTION

ARTIFICIAL intelligence is uniquely poised to cope with
the growing demands of the universal healthcare sys-

tem [1]. The healthcare industry is projected to reach over
10 trillion dollars by 2022, and the associated workload on
medical practitioners is expected to grow concurrently [2]. As
the reliability of Deep Learning (DL) improves, it has per-
vaded various facets of healthcare from monitoring [3], [4], to
prediction [5], diagnosis [6], treatment [7], and prognosis [8].
Fig. 1(a) shows how data collected from the patient, which
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may be a combination of bio-samples, medical images, tem-
perature, movement, etc., can be processed using a smart DL
system that monitors the patient for anomalies and/or to predict
diseases. DL systems can be used to recommend treatment
options and prognosis, which further affect monitoring and
prediction in a closed-loop scenario.

The capacity of Artificial Intelligence (AI) to meet or
exceed the performance of human experts in medical-data
analysis [9], [10], [11] can, in part, be attributed to the
continued improvement of high-performance computing plat-
forms such as Graphics Processing Units (GPUs) [12] and
customized Machine Learning (ML) hardware [13]. These can
now process and learn from a large amount of multi-modal
heterogeneous general and medical data [14]. This was not
readily achievable a decade ago.

While the field of DL has been growing at an astonishing
rate in terms of performance, network size, and training run
time, the development of dedicated hardware to process DL
algorithms is struggling to keep up. Concretely, the compute
loads of DL have doubled every 3.4 months since 2012.
Moore’s Law targets the doubling of compute power every
18-24 months, and appears to be slowing down [15]. The
progress in hardware accelerator development currently relies
on advances by a handful of technology companies, most
notably Nvidia and its GPUs [16], [17] and Google and its
Tensor Processing Units (TPUs) [13], in addition to new
startups and research groups developing Application Specific
Integrated Circuits (ASICs) for DL training and acceleration.
While there are significant advances in tailoring deep network
models and algorithms for various healthcare and biomedical
applications [18], most computationally expensive deep net-
works are trained on either GPUs or in data centers [12],
[19]. The latter typically requires access to cloud computing
services which is not only costly and comes with high power
demands, but also compromises data privacy. This is distinct
to the effective deployment of DL at the edge on an increasing
number of medical IoT devices [20] and PoC systems [21], as
illustrated in Fig. 1(b). Edge learning and inference enables the
option to move processing away from the cloud. This is critical
for highly sensitive medical data and offline operation. Edge-
based processing must combine compactness, low-power, and
rapid (high throughput) at a low-cost, to make smart health
monitoring viable and affordable for integration into human
life [22].
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Fig. 1. A depiction of (a) the usage of DL in a smart healthcare setting, which typically involves monitoring, prediction, diagnosis, treatment, and prognosis.
The various parts of the DL-based healthcare system can run on (b) the three levels of the IoT, i.e. edge devices, edge nodes, and the cloud. However, for
healthcare IoT and PoC processing, edge learning and inference is preferred.

Specialized embedded DL accelerators, such as the Nvidia
Jetson and Xavier series [23], and the Movidius Neural Com-
pute Stick [24], [25], have shown the promise of edge comput-
ing. More recently, the Nvidia Clara Embedded was released
as a healthcare-specific edge accelerator. This is a computing
platform for edge-enabled AI on the Internet of Medical
Things (IoMT). However, embedded devices remain relatively
power hungry and costly, and many state-of-the-art algorithms
far exceed the memory bandwidth of resource-constrained
devices. They are not yet ideal learning/inference engines
for ambient-assisted precision medicine systems. There is a
need for innovative systems which can satisfy the stringent
requirements of healthcare edge devices to be made affordable
to the community at large scales.

To that end, in this paper we focus on the use of three vari-
ous hardware technologies to develop dedicated deep network
accelerators which will be discussed from a biomedical and
healthcare application point-of-view. The three technologies
that we cover here are CMOS, memristors, and Field Pro-
grammable Gate Arrays (FPGAs). It is worth noting that, while
our focus targets edge inference engines in the biomedical
domain, the techniques and hardware advantages discussed
here are likely to be useful for efficient offline deep network
learning, or online on-chip learning. Herein, the term DL
‘accelerator’ is used to refer to a device that is able to perform
DL inference and potentially training.

This tutorial on DL accelerators within the biomedical
sphere commences with a brief introduction to artificial and
spiking neural networks. Next, we introduce the computational
demands of DL by shedding light on why they are power- and
resource-intensive. This will justify the need for application
specific hardware platforms. After that, we discuss recent
hardware advances which have led to improvements in training
and inference efficiency. These improvements ultimately guide
us to viable edge inference engine options.

After reviewing the literature on these DL accelerators, we

quantify the performance of various algorithms on different
types of DL processors. The results allow us to draw a
perspective on the potential future of spike-based neuromor-
phic processors in the biomedical signal processing domain.
Based on our analysis and perspective, we conjecture that,
for edge processing, neuromorphic computing and Spiking
Neural Networks (SNNs) [26] will likely complement DL
inference engines, either through signaling anomalies in the
data or acting as ‘intelligent always-on watchdogs’ which
continuously monitor the data being recorded, but only activate
further processing stages if and when necessary.

We expect this tutorial, review and perspective to provide
guidance on the history and future of DL accelerators, and the
potential they hold for advancing healthcare. Our contributions
are summarized as follows:

• Our paper is the first to discuss the use of three differ-
ent emerging and established hardware technologies for
facilitating DL acceleration, with a focus on biomedical
applications.

• We provide tutorial sections on how one may implement
a typical biomedical task on FPGAs or simulate it for
deployment on memristive crossbars.

• Our paper is the first to discuss how event-based neuro-
morphic processors can complement DL accelerators for
biomedical signal processing.

• We provide open-source code and data to enable the
reproduction of our results.

The remainder of the paper is organized as follows. In
Section II, we define the technical terminology that is used
throughout this paper and cover the working principles of
artificial and spiking neural networks. We also introduce a
biomedical signal processing task for hand-gesture classifica-
tion, which is used for benchmarking the different technolo-
gies and algorithms discussed in this paper. In Section III,
we step through the design, simulation, and implementation
of Deep Neural Networks (DNNs) using different hardware
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Fig. 2. Popular ANN structures. MLP/Dense/Fully Connected are typically well-suited for cross-sectional quantitative data, whereas RNNs and LSTMs
networks are optimized for sequential data. CNNs are equipped for both types.

technologies. We show sample cases of how they have been
deployed in healthcare settings. Furthermore, we demonstrate
the steps and techniques required to simulate and implement
hardware for the benchmark hand-gesture classification task
using memristive crossbars and FPGAs.

In Section IV, we provide our perspective on the challenges
and opportunities of both DNNs and SNNs for biomedical ap-
plications and shed light on the future of spiking neuromorphic
hardware technologies in the biomedical domain. Section V
concludes the tutorial.

II. DEEP ARTIFICIAL AND SPIKING NEURAL NETWORKS

A. Nomenclature of Neural Network Architectures

Although most DNNs reported in literature are ANNs,
DNNs refer to more than one hidden layer, independently of
whether the architecture is fully connected, convolutional, re-
current, ANN or SNN, or of any other structure. For example,
the most widely used DNN type in image processing, i.e. a
CNN, can be physically implemented as an ANN or SNN,
and in both cases it would be ‘deep’. However, in this paper,
whenever we use the terms ‘deep’, DL, or deep network, we
refer to Deep Artificial Neural Networks. For Deep Spiking
Neural Networks, we simply use the term SNN.

B. Deep Artificial Neural Networks

Traditional ANNs and their learning strategies that were
first developed several decades ago [27] have, in the past
several years, demonstrated unprecedented performance in a
plethora of challenging tasks which are typically associated
with human cognition. These have been applied to medical
image diagnosis [28] and medical text processing [29], using
DNNs.

Fig. 2 illustrates a simplified overview of the structure of
some of the most widely-used DNNs. The most conventional
form of these architectures is the Multi-Layer Perceptron
(MLP). Increasing the number of hidden layers of perceptron
cells is widely regarded to improve hierarchical feature ex-
traction which is exploited in various biomedical tasks, such
as seizure detection from electroencephalography (EEG) [30],
[31]. CNNs introduce convolutional layers, which use spatial

filters to encourage spatial invariance. CNNs often include
pooling layers to downsample their outputs to reduce the
search space for subsequent convolutional layers. CNNs have
been widely used in medical and healthcare applications, as
they are very well-suited for spatially structured data. Their
use in medical image analysis [32] will form a major part of
our discussions in subsequent sections.

RNNs are another powerful network architecture re-
cently used both individually [33], and in combination with
CNNs [34], in biomedical applications. RNNs introduce recur-
rent cells with a feedback loop, and are especially useful for
processing sequential data such as temporal signals and time-
series data, e.g. electrocardiography (ECG) [34], and medical
text [35]. The feedback loop in recurrent cells gives them a
memory of previous steps and builds a dynamic awareness of
changes in the input. The most well-known type of RNNs are
LSTMs which are designed to mine patterns in data sequences
using their short-term memory of distant events stored in their
memory cells. LSTMs have been widely used for processing
biomedical signals such as ECGs [33], [36]. Although there
are many other variants of DNN architectures, we will focus
on these most commonly used types.

1) Automatic hierarchical feature extraction: The above
mentioned DNNs learn intricate features in data through
multiple computational layers across various levels of ab-
straction [37]. The fundamental advantage of DNNs is that
they mine the input data features automatically, without the
need for human knowledge in their supervised learning loop.
This allows deep networks to learn complex features by
combining a hierarchy of simpler features learned in their
hidden layers [37].

2) Learning algorithms: Learning features from data in a
DNN, e.g. the networks shown in Fig. 2, is typically achieved
by minimizing a loss function. In most cases, this is equivalent
to finding the maximum likelihood using the cross-entropy
between training data and the learned model distribution.
Loss function minimization is achieved by optimizing the
network parameters (weights and biases). This optimization
process minimizes the loss function from the final network
layer backward through all the network layers and is therefore
called backpropagation. Widely used optimization algorithms
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in DNNs include Stochastic Gradient Descent (SGD) and those
that use adaptive learning rates [37].

3) Backpropagation in DNNs is computationally expensive:
Despite the continual improvement of hardware platforms for
running and training DNNs, reducing their power consumption
is a computationally formidable task. One of the dominant
reasons is the feed-forward error backpropagation algorithm,
which depends on thousands of epochs of computationally in-
tensive Vector Matrix Multiplication (VMM) operations [27],
using huge datasets that can exceed millions of data points.
These operations, if performed on a conventional von Neu-
mann architecture which has separate memory and processing
units, will have a time and power complexity of order O(N2)
for multiplying a vector of length N in a matrix of dimensions
N ×N .

In addition, an artificial neuron in DNNs calculates a sum-
of-products of its input-weight matrix pairs. For instance, a
CNN spatially structures the sum-of-products calculation into
a VMM operation. In digital logic, an adder tree can be used to
accumulate a large number of values. This, however, becomes
problematic in DNNs when one considers the sheer number
of elements that must be summed together, as each addition
requires one cycle.

4) Transfer learning: A major assumption when training
DNNs is that both training and test samples are drawn from the
same feature space and distribution. When the feature space
and/or distribution changes, DNNs should be retrained. Rather
than training a new model from scratch, trained parameters
from an existing model can be fixed, tuned, or adapted [38].
This process of transfer learning can be used to greatly reduce
the computational expense of training DNNs.

In the medical imaging domain, transfer learning from natu-
ral image datasets, particularly ImageNet [39], using standard
large models and corresponding pretrained weights has be-
come a de-facto method to speed up training convergence and
to improve accuracy [40]. Transfer learning can also be used
to leverage personalized anatomical knowledge accumulated
over time to improve the accuracy of pre-trained CNNs for
specific patients [41], i.e., to perform patient-specific model
tuning. This is an important topic in biomedical application
domains, which will be further discussed in IV-F.

C. DL Accelerators

In Table I, we depict some popular CNN architectures,
accompanied with the total number of weights, and MAC op-

TABLE I
NUMBER OF WEIGHTS AND MULTIPLY-AND-ACCUMULATE (MAC)

OPERATIONS IN VARIOUS CNN ARCHITECTURES FOR A SINGLE IMAGE
AND FOR VIDEO PROCESSING AT 25 FRAMES PER SECOND.

Network architecture Weights MACs @ 25 FPS

AlexNet 61 M 725 M 18 B
ResNet-18 11 M 1.8 B 45 B
ResNet-50 23 M 3.5 B 88 B
VGG-19 144 M 22 B 550 B
OpenPose 46 M 180 B 4500 B
MobileNet 4.2 M 529 M 13 B

erations that must be computed for a single image (input reso-
lutions of 656×468 for OpenPose, 224×224 for the rest). This
table highlights two key facts. Firstly, MACs are the dominant
operation of DNNs. Therefore, hardware implementations of
DNNs should strive to parallelize a large number of MACs to
perform effectively. Secondly, there are many predetermined
weights that must be called from memory. Reducing the energy
and time consumed by reading weights from memory provides
another opportunity to improve efficiency.

Consequently, significant research has been being conducted
to achieve massive parallelism and to reduce memory access
in DNN accelerators, using different hardware technologies
and platforms as depicted in Fig. 3. Although these goals
are towards general DL applications, they can significantly
facilitate fast and low-power smart PoC devices [21] and
healthcare IoT systems.

In addition to conventional DL accelerators, there have been
significant research efforts to utilize biologically plausible
SNNs for learning and cognition [42]. Spiking neuromorphic
processors have also been used for biomedical signal process-
ing [43], [44], [45]. Below, we provide a brief introduction to
SNNs, which will be discussed as a method complementary
to DL accelerators for efficient biomedical signal processing
later in this paper. We will also perform comparisons among
SNNs and DNNs in performing an electromyography (EMG)
processing task.

D. Spiking Neural Networks

SNNs are neural networks that typically use Integrate-
and-Fire neurons to dynamically process temporally varying
signals (see Fig. 4(j)). By integrating multiple spikes over time,
it is possible to reconstruct an analog value that represents
the mean firing rate of the neuron. The mean firing rate is
equivalent to the value of the activation function of ANNs. So
in the mean firing rate limit, there is an equivalence between
ANNs and SNNs. By using spikes as all-or-none digital
events (Fig. 4(i)), SNNs enable the reliable transmission of
signals across long distances in electronic systems. In addition,
by introducing the temporal dimension, these networks can
efficiently encode and process sequential data and temporally
changing inputs [46]. SNNs can be efficiently interfaced with
event-based sensors since they only process events as they
are generated. An example of such sensors is the Dynamic
Vision Sensor (DVS), which is an event-based camera shown
in Fig. 4(h). The DVS consists of a logarithmic photo-detector
stage followed by an operational transconductance amplifier
with a capacitive-divider gain stage, and two comparators.
The ON/OFF spikes are generated every time the difference
between the current and previous value of the input exceeds a
pre-defined threshold. The sign of the difference corresponds
to the ON or OFF channel where the spike is produced. This is
different to conventional cameras (Fig. 4(f)), which produce
image frames (Fig. 4(g)). Intuitively, it makes sense to use
asynchronous event-based sensor data in asynchronous SNNs,
and synchronously generated frames (i.e., all pixels are given
at a regular clock interval) through synchronous ANNs. But
it is worth noting that conventional frames can be encoded as
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Fig. 3. Typical hardware technologies for DNN acceleration. In this paper we
cover the top two layers of the pyramid, which include specialized hardware
technologies for high-performance training and inference of DNNs. While the
apex is labelled RRAM, this is intended to broadly cover all programmable
non-volatile resistive switching memories e.g. CBRAM, MRAM, PCM, etc.

asynchronous spikes with frequencies that vary based on pixel
intensity, and event streams can be integrated over time into
synchronously generated time-surfaces [47], [48]. Event-based
sensors have been used to process biomedical signals [43], [49]
(Fig. 4(a)), which can be encoded to spike trains (Fig. 4(b))
to be processed by SNNs or be digitally sampled (Fig. 4(c))
for use in DNNs for learning and inference (Fig. 4(d)).

E. Benchmarking on a Biomedical Signal Processing Task

In Section III we will present a use-case of bio-signal
processing where FPGA and memristive DNN accelerators
are implemented and simulated. These are later compared to
equivalent existing implementations1 using DNN accelerators
and neuromorphic processors from [45]. To perform com-
parisons, we use the same hand-gesture recognition task as
in [45].

Tasks such as prosthesis control can be performed using
EMG signals, hand-gesture classification, or a combination
of both. Here, the adopted hand-gesture dataset [45] is a
collection of 5 hand gestures recorded with two sensor modal-
ities: muscle activity from a Myo armband that senses EMG
electrical activity in forearm muscles, and a visual input
in the form of DVS events. Moreover, the dataset provides
accompanying video captured from a traditional frame-based
camera, i.e., images from an Active Pixel Sensor (APS) to feed
DNNs. Recordings were collected from 21 subjects including
12 males and 9 females between the ages 25 and 35, and were
taken over three separate sessions.

For each implementation, we compare the mean and stan-
dard deviation of the accuracy obtained over a 3-fold cross
validation, where each fold encapsulates all recordings from
a given session. Additionally, for all implementations, we

1https://github.com/Enny1991/dvs emg fusion/blob/master/full baseline.
py

compare the energy and time required to perform inference
on a single input, as well as the Energy-Delay Product (EDP),
which is the average energy consumption multiplied by the
average inference time.

III. DNN ACCELERATORS TOWARDS HEALTHCARE AND
BIOMEDICAL APPLICATIONS

In this Section, we cover the use of CMOS and memris-
tors in DL acceleration. We discuss how they use different
strategies to achieve two of the key DNN acceleration goals,
namely MAC parallelism and reduced memory access. We also
discuss and review FPGAs as an alternative reconfigurable
DNN accelerator platform, which has shown great promise
in the healthcare and biomedical domains.

A. CMOS DNN Accelerators

General edge-AI CMOS accelerator chips can be used for
DNN-enabled healthcare IoT and PoC systems. Therefore,
within this subsection, we first review a number of these chips
and provide examples of potential healthcare applications they
can accelerate. We will also explore some common approaches
to CMOS-driven acceleration of AI algorithms using massive
MAC parallelism and reduced memory access, which are
useful for both edge-AI devices and offline data center scale
acceleration.

1) Edge-AI DNN accelerators suitable for biomedical ap-
plications: The research and market for ASICs, which focus
on a new generation of microprocessor chips dedicated entirely
to machine learning and DNNs, have rapidly expanded in
recent years. Table II shows a number of these CMOS-
driven chips, which are intended for portable applications.
There are many other examples of AI accelerator chips (for
a comprehensive survey see [51]), but here we picked several
prolific examples, which are designed specifically for DL using
DNNs, RNNs, or both. We have also included a few general
purpose AI accelerators from Google [52], Intel [53], and
Huawei [54].

Although developed for general DNNs, the accelerators
shown in Table II can efficiently realize portable smart DL-
based healthcare IoT and PoC systems for processing image-
based (medical imaging) or dynamic sequential medical data
types (such as EEG and ECG). For instance, the table shows
a few exemplar healthcare and biomedical applications that
are picked based on the demonstrated capacity of these ac-
celerators to run (or train [55]) various well-known CNN
architectures such as VGG, ResNet, MobileNet, AlexNet,
Inception, or RNNs such as LSTMs, or combined CNN-RNNs.
It is worth noting that most of the available accelerators are
intended for CNN inference, while only some [56], [57], [58]
also include recurrent connections for RNN acceleration.

The Table shows that the total power per chip in most of
these devices is typically in the range of hundreds of mW, with
a few exceptions consuming excessive power of around 10
Watts [53], [54]. This is required to avoid large heat sinks and
to satisfy portable battery constraints. The Table also shows the
computing capability per unit time (column ‘Computational

https://github.com/Enny1991/dvs_emg_fusion/blob/master/full_baseline.py
https://github.com/Enny1991/dvs_emg_fusion/blob/master/full_baseline.py
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Fig. 4. DNNs and SNN neuromorphic processors adopt different operation models. In DNNs, inputs are processed in batches which propagate serially.
Consequently, they require clocks for process synchronization. SNNs are asynchronous and process temporally encoded inputs independently. Time series
signals, such as the EMG signal presented in (a) can be either (b) temporally encoded using spike train encoding schemes such as [43], before being fed into
(j) neuromorphic processors, or (c) digitally sampled, before being concatenated into batches, to be fed into (d) DNNs. Similarly, photographs captured from
(e) lenses can be (i) temporally encoded into spike trains using (h) DVSs [50] or (f) digitally encoded using conventional cameras to build (g) image frames.

Power (GOP/s)’). Regardless of power consumption, this col-
umn reveals the computational performance and consequently
the size of a network one can compute per unit time. It is
demonstrated that several of these chips can run large and
deep CNNs such as VGG and ResNet, which enable them to
perform complex processing tasks within a constrained edge
power budget.

For instance, it has been previously shown in [60] that VGG
CNN (shown to be compatible with Cambricon-x [59]), can
successfully analyze ECog signals. Therefore, considering the
power efficiency of Cambricon-x, it can be used to implement
a portable automatic ECog analyzer for PoC diagnosis of
various cardiovascular diseases [78]. Similarly, Eyeriss [61]
can run VGG-16, which is shown to be effective in diagnosing
thyroid cancer [62]. In addition, Eyeriss can run AlexNet for
several different medical imaging applications [32]. Therefore,
Eyeriss can be used as a mobile diagnostic tool that can be
integrated into or complement medical imaging systems at the
PoC. Origami [63] is another CNN accelerator chip, which can
be used for other healthcare applications based on a CNN. For
instance, [64] proposes a CNN-based ECG analysis for heart
monitoring, or [65] introduces a two-stage end-to-end CNN
for human activity recognition for elderly and rehailitation

monitoring, whereas Origami can be used to develop a smart
healthcare IoT edge device. Similarly, the CNN processor pro-
posed in [66] is shown to be able to run AlexNet, which can be
deployed in a PoC ultrasound image processing system [67].
Envision [68] is another accelerator that has the capability to
run large-scale CNNs. It can also be used as an edge inference
engine for a multi-layer CNN for EEG/ECog feature extraction
for epilepsy diagnosis [69]. Neural processor [70] is another
CNN accelerator that is shown to be able to run Inception
V3 CNN, which can be used for skin cancer detection [11] at
the edge. LNPU [55] is the only CNN accelerator shown in
Table II, which unlike the others can perform both learning
and inference of a deep network such as AlexNet and VGG-
16, for applications including on edge medical imaging [32]
and cancer diagnosis [62].

Unlike the above discussed chips that are capable of running
only CNNs, DNPU [56], Thinker [57], and UNPU [58] are
capable of accelerating both CNNs and RNNs. This fea-
ture makes them suitable for a wider variety of edge-based
biomedical applications such as ECG analysis for BCI using a
cascaded RNN-CNN [34], PoC MRI construction from motion
ultrasounds using a long-term recurrent CNN [71], intelligent
medical consultation using a CNN-RNN [35], respiratory
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TABLE II
A NUMBER OF RECENT EDGE-AI CMOS CHIPS SUITABLE FOR PORTABLE HEALTHCARE AND BIOMEDICAL APPLICATIONS.

CMOS Chip Core size
(mm2)

Technology
(nm)

Computational
Power (GOP/s)

Power
(mW)

Power Efficiency
(TOPS/W)

Potential Mobile and Edge-based Health-
care and Medical Applications

Cambricon-x [59] 6.38 65 544 954 0.5 ECog analysis using a sparse VGG [60] for
PoC diagnosis of cardiovascular diseases

Eyeriss [61] 12.25 65 17-42 278 0.06–0.15 - Mobile Image-based cancer diagnosis us-
ing VGG-16 [62],
- Mobile diagnosis tool based on AlexNet
for radiology, cardiology gastroenterology
imaging [32]

Origami [63] 3.09 65 196 654 0.8 - Smart healthcare IoT edge device for heart
health monitoring using a CNN-based ECG
analysis [64]
- Two-stage end-to-end CNN for human
activity recognition [65]

ConvNet processor [66] 2.4 40 102 25-287 0.3–2.7 PoC Ultrasound processing using
AlexNet [67]

Envision [68] 1.87 28 76-408 7.5-300 0.8–10 Multi-layer CNN for EEG/ECog feature
extraction for epileptogenicity for epilepsy
diagnosis on edge [69]

Neural processor [70] 5.5 8 1900-7000 39–1500 4.5-11.5 On edge classification of skin cancer using
Inception V3 CNN [11]

LNPU [55] 16 65 600 43-367 25 - On edge learning/inference using VGG-16
for cancer diagnosis [62],
- On edge AlexNet learning/inference
for radiology, cardiology, gastroenterology
imaging diagnosis [32]

DNPU [56] 16 65 300-1200 35-279 2.1–8.1 Parallel and Cascade RNN and CNN for
acECG analysis for BCI [34]

Thinker [57] 14.44 65 371 293 1–5 - PoC conversion of respiratory organ mo-
tion ultrasound into MRI using a long-term
recurrent CNN [71]

UNPU [58] 16 65 346-7372 3.2-297 3.08–50.6 - Intelligent pre-diagnosis medical sup-
port/consultation using a CNN-RNN [35]
- A CNN-RNN for respiratory sound clas-
sification in wearable devices enabled by
patient specific model tuning [72]
- A CNN-LSTM for missing Photoplethys-
mographic data prediction [73]

Google Edge TPU [52] 25 - 4000 2000 2 - Low-cost and easy-to-access skin cancer
detection using MobileNet V1 CNN [25]
- On edge health monitoring for fall detec-
tion using LSTMs [74]
- Robust long-term decoding in intracortical
BMIs using MLP and ELM networks [75]

Intel Nervana NNP-I
1000 (Spring Hill) [53]

- 10 48000 10000 4.8 - Diagnosis using chest X-ray classification
on ResNet CNN family [76]
- Long term bowel sound segmentation us-
ing a CNN [77]

Huawei Ascend 310
[54]

- 12 16000 8000 2 - Cardiovascular monitoring for arrhythmia
diagnosis from ECG using an LSTM [33],
- Health monitoring by heart rate variability
analysis using ECG analysis by a bidirec-
tional LSTM [36]

sound classification in wearable devices enabled by patient
specific model tuning using a CNN-RNN [72], or on-chip
online and personalized prediction of missing Photoplethys-
mographic data [73].

Table II lists three general purpose AI accelerator chips,
which have been deployed for low-cost and easy-to-access
skin cancer detection using MobileNet V1 CNN [25], on edge
health monitoring for fall detection using LSTMs [74], chest
X-ray analysis using ResNet CNN [76], long term bowel sound

monitoring and segmentation using a CNN [77], cardiovas-
cular arrhythmia detection from ECG using an LSTM [33],
or heart rate variability analysis from ECG signals through a
bidirectional LSTM [36], just to name a few. These general-
purpose chips have the potential to be used for other biomedi-
cal edge-based applications such as robust long-term decoding
in intracortical BMIs using MLP and ELM networks in a
sparse ensemble machine learning platform [75].

In addition to the edge-AI CNN and RNN acceleration chips
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Fig. 5. Compilation flow used to deploy an EMG classification CNN to an OpenVINO FPGA adopting fixed-point number representations using OpenCL.

or general ML chips mentioned in Table II, there have been
other works that have developed custom CMOS platforms for
biomedical applications. Examples of these CMOS designs
include [79] that has developed a 128-Channel ELM-based
neural decoder for BMI, and [80] that has implemented an
autoencoder neural network as part of a neural interface
processor for brain-state classification and programmable-
waveform neurostimulation.

2) Common approaches to CMOS-driven DL acceleration:
Accelerators will typically target either data center use or
embedded ‘edge-AI’ acceleration. Edge chips, such as those
discussed above, must operate under restrictive power budgets
(e.g., within thermal limits of 5 W) to cope with portable
battery constraints. While the scale of tasks, input dimension
capacity, and clock speeds will differ between edge-AI and
modular data center racks, both will adopt similar principles
in the tasks they seek to optimize.

Most of the accelerator chips, such as those discussed
in Table II, use similar optimization strategies involving re-
duced precision arithmetic [55], [58], [66], [68] to improve
computational throughput. This is typically combined with
architectural-level enhancements [56], [57], [59], [61], [70]
to either reduce data movement (using in- or near-memory
computing), heightened parallelism, or both. In addition, there
are many other approaches commonly used to make neural
network implementations more efficient. Examples of these
include tensor decomposition, pruning, and mixed-precision
data representation, which are often integrated in hardware
with in-memory and near-memory computing. A thorough
review of these approaches can be found in [81] and [82].

Sequential and combinational logic research is largely ma-
tured, so outside of emerging memory technologies, the domi-
nant hardware benefits are brought on by optimizing data flow
and architecture. An early example is the neuFlow system-on-
chip (SoC) processor which relies on a grid of processing
tiles, each made up of a bank of processing operators and a
multiplexer based on-chip router [83]. The processing operator
can serially perform primitive computation (MUL, DIV, ADD,
SUB, MAX), or a parallelized 1D/2D convolution. The router
configures data movement between tiles to support streaming
data flow graphs.

Since the development of neuFlow, over 100 startups and
companies have developed, or are developing, machine learn-
ing accelerators. The Neural Processing Unit (NPU) [84] gen-
eralizes the work from neuFlow by employing eight processing
engines which each compute a neuron response: multipli-

cation, accumulation, and activation. If a program could be
partitioned such that a segment of it can be calculated using
MACs, then it would be partially computed on the NPU. This
made it possible to go beyond MLP neural networks. The
NPU was demonstrated to perform Sobel edge detection and
fast Fourier transforms as well.

NVIDIA coupled their expertise in developing GPUs with
machine learning dedicated cores, namely, tensor cores, which
are aimed at demonstrating superior performance over regular
Compute Unified Device Architecture (CUDA) cores [17].
Tensor cores target mixed-precision computing, with their
NVIDIA Tesla V100 GPU combining 672 tensor cores on
a single unit. By merging the parallelism of GPUs with the
application specific nature of tensor cores, their GPUs are
capable of energy efficient general compute workloads, as well
as 12 trillion floating-point operations per seconds (TFLOPSs)
of matrix arithmetic.

Although plenty of other notable architectures exist (see
Table II), a pattern begins to emerge, as most specialized
processors rely on a series of sub-processing elements which
each contribute to increasing throughput of a larger proces-
sor [82], [81]. Whilst there are plenty of ways to achieve
MAC parallelism, one of the most renowned techniques is
the systolic array, and is utilized by Groq [85] and Google,
amongst numerous other chip developers. This is not a new
concept: systolic architectures were first proposed back in the
late 1970s [86], [87], and have become widely popularized
since powering the hardware DeepMind used for the AlphaGo
system to defeat Lee Sedol, the world champion of the board
game Go in October 2015. Google also uses systolic arrays
to accelerate MACs in their TPUs, just one of many CMOS
ASICs used in DNN processing [13].

B. FPGA DNNs

FPGAs are fairly low-cost reconfigurable hardware that
can be used in almost any hardware prototyping and imple-
mentation task, significantly shortening the time-to-market of
an electronic product. They also provide parallel computa-
tion, which is essential when simultaneous data processing
is required such as processing multiple ECG channels in
parallel. Furthermore, there exists a variety of High Level
Synthesis (HLS) tools and techniques [88], [89] that facilitate
FPGA prototyping without the need to directly develop time-
consuming low-level Hardware Description Language (HDL)
codes [90]. These tools allow engineers to describe their
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targeted hardware in high-level programming languages such
as C to synthesize them to Register Transfer Level (RTL).
The tools then offload the computational-critical RTL to run as
kernels on parallel processing platforms such as FPGAs [91].

1) Accelerating DNNs on FPGAs: FPGAs have been previ-
ously used to realize mostly inference [89], [92], [93], and in
some cases training of DNNs with reduced-precision-data [94],
or hardware-friendly approaches [95]. For a comprehensive
review of previous FPGA-based DNN accelerators, we refer
the reader to [89].

Here, we demonstrate an example of accelerating DNNs
to benchmark the biomedical signal processing task explained
in subsection II-E. For our acceleration, we use fixed-point
parameter representations on a Starter Platform for OpenVINO
Toolkit FPGA using OpenCL. OpenCL [88] is an HLS frame-
work for writing programs that execute across heterogeneous
platforms. OpenCL specifies programming languages (based
on C99 and C++11) for programming the compute devices
and Application Programming Interfaces (APIs) to control and
execute its developed kernels on the devices, where depending
on the available computation resources, an accelerator can
pipeline and execute all work items in parallel or sequentially.

Fig. 5 depicts the compilation flow we adopted. The trained
DNN PyTorch model is first converted to .prototxt and .caf-
femodel files using Caffe. All weights and biases are then con-
verted to a fixed point representation using MATLAB’s Fixed-
point toolbox using word length and fractional bit lengths
defined in [96], prior to being exported as a single binary .dat
file for integration with PipeCNN, which is used to generate
the necessary RTL libraries, and to perform compilation of
the host executable and the FPGA bit-stream. We used Intel’s
FPGA SDK for OpenCL 19.1, and provide all files used
during the compilation shown in Fig. 5 in a publicly accessible
complementary GitHub repository2.

2) FPGA-based DNNs for biomedical applications: De-
spite the many FPGA-based DNN accelerators available [89],
only a few have been developed specifically for biomedical
applications such as ECG anomaly detection [97], or real-
time mass-spectrometry data analysis for cancer detection [98],
where the authors show that application-specific parameter
quantization and customized network design can result in
significant inference speed-up compared to both CPU and
GPU. In addition, the authors in [99] have developed an
FPGA-based BCI, in which a MLP is used for reconstructing
ECog signals. In [100], the authors have implemented an EEG
processing and neurofeedback prototype on a low-power but
low-cost FPGA and then scaled it on a high-end Ultra-scale
Virtex-VU9P, which has achieved 215 and 8 times power
efficiency compared to CPU and GPU, respectively. For the
EEG processing, they developed an LSTM inference engine.

It is projected that, by leveraging specific algorithmic de-
sign and hardware-software co-design techniques, FPGAs can
provide >10 times energy-delay efficiency compared to state-
of-the-art GPUs for accelerating DL [89]. This is significant
for realizing portable and reliable healthcare applications.

2https://github.com/coreylammie/TBCAS-Towards-Healthcare-and-
Biomedical-Applications/blob/master/FPGA/

However, FPGA design is not as straightforward as high-level
designs conducted for DL accelerators and requires skilled
engineers and stronger tools, such as those offered by the GPU
manufacturers.

C. Memristive DNNs

To achieve the two aforementioned key DNN acceleration
goals, i.e. massive MAC parallelism and reduced memory
access, many studies have leveraged memristors [101], [102],
[103], [104] as weight elements in their DNN and SNN [105],
[106] architectures. Memristors are often referred to as the
fourth fundamental circuit element, and can adapt their resis-
tance (conductance) to changes in the applied current or volt-
age. This is similar to the adaptation of neural synapses to their
surrounding activity while learning. This adaptation feature
is integral to the brain’s in-memory processing ability, which
is missing in today’s general purpose computers. This in-situ
processing can be utilized to perform parallel MAC operations
inside memory, hence, significantly improving DNN learning
and inference. This is achieved by developing memristive
crossbar neuromorphic architectures, which are projected to
achieve approximately 2500-fold reduction in power and a
25-fold increase in acceleration, compared to state-of-the-art
specialized hardware such as GPUs [101].

1) Memristive crossbars for parallel MAC and VMM oper-
ations: A memristive crossbar that can be fabricated using
a variety of device technologies [106], [107] can perform
analog MAC operations in a single time-step (see Fig. 6(a)).
This reduces the time complexity to its minimum (O(1)),
and is achieved by carrying out multiplication at the place
of memory, in a non-von Neumann structure. Using this well-
known approach, VMM can be parallelized as demonstrated in
Fig. 6(b), where the vector of size M represents input voltage
signals ([V1..VM ]). These voltages are applied to the rows of
the crossbar, while the matrix (of size M×N ), whose elements
are represented as conductances (resistances), is stored in the
memristive components at each cross point. Taking advantage
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Fig. 6. Memristive crossbars can parallelize (a) analog MAC and (b) VMM
operations. Here, V represents the input vector, while conductances in the
crossbar represent the matrix.
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of the basic Ohm’s law (I = V.G), the current summed in
each crossbar column represents one element of the resulting
multiplication vector of size N .

2) Mapping memristive crossbars to DNN layers: Although
implementing fully-connected DNN layers is straightforward
by mapping the weights to crossbar point memristors and
having the inputs represented by input voltages, implementing
a complex CNN requires mapping techniques to convert con-
volution operations to MAC operations. A popular approach
to perform this conversion is to use an unrolling (unfolding)
operation that transforms the convolution of input feature
maps and convolutional filters to MAC operations. We have
developed a software platform named MemTorch [108], that
will be introduced in subsequent sections, to perform this map-
ping as well as a number of other operations, for converting
DNNs to Memristive DNNs (MDNNs). The mapping process
implemented in MemTorch is illustrated in the left panel in
Fig. 7. The figure shows that the normal input feature maps and
convolutional filters (shown in gray shaded area) are unfolded
and reshaped (shown in the cyan shaded area) to be compatible
with memristive crossbar parallel VMM operations. It is worth
noting that the convolutional filters that can be applied to
the input feature maps have a direct relationship with the
required crossbar sizes. Furthermore, the resulting hardware
size depends on the size of the input feature maps [109].

3) Peripheral circuitry for memristive DNNs: In addition
to the memristive devices that are used as programmable
elements in MDNN architectures, various peripheral circuitry
is required to perform feed-forward error-backpropagation
learning in MDNNs [103]. This extra circuitry may include:
(i) a conversion circuit to translate the input feature maps to
input voltages, which for programming memristive devices are
usually Pulse Width Modulator (PWM) circuits, (ii) current
integrators or sense amplifiers, which pass the current read
from every column of the memristive crossbar to (iii) analog
to digital converters (ADCs), which pass the converted voltage
to (iv) an activation function circuit, for forward propagation,
and for backward error propagation (v) the activation function
derivative circuit. Other circuits required in the error back-
propagation path include (vi) backpropagation values to PWM
voltage generators, (vii) backpropagation current integrators,
and (viii) backpropagation path ADCs. In addition, an update
module that updates network weights based on an algorithm
such as SGD is required, which is usually implemented in
software. After the update, the new weight values should be
written to the memristive crossbar, which itself requires Bit-
Line (BL) and Word-line (WL) switch matrices to address
the memristors for update, as well as a circuit to update
the memristive weights. There are different approaches to
implement this circuit such as that proposed in [110], while
others may use software ex-situ training where the new weight
values are calculated in software and transferred to the physical
memristors through peripheral circuitry [103].

4) Memristive device nonidealities: Although ideal mem-
ristive crossbars have been projected to remarkably accelerate
DNN learning and inference and drastically reduce their power
consumption [101], [102], device imperfections observed in
experimentally fabricated memristors impose significant per-

formance degradation when the crossbar sizes are scaled up
for deployment in real-world DNN architectures, such as those
required for healthcare and biomedical applications discussed
in subsection III-A. These imperfections include nonlinear
asymmetric and stochastic conductance (weight) update, de-
vice temporal and spatial variations, device yield, as well as
limited on/off ratios [101]. To minimize the impact of these
imperfections, specific peripheral circuitry and system-level
mitigation techniques have been used [111]. However, these
techniques add significant computation time and complexity to
the system. It is, therefore, essential to take the effect of these
nonidealities into consideration before utilizing memristive
DNNs for any healthcare and medical applications, where
accuracy is critical. In addition, there is a need for a unified
tool that reliably simulates the conversion of a pre-trained
DNN to a MDNN, while critically considering experimentally
modeled device imperfections [108].

5) Conversion of DNN to MDNN while considering mem-
ristor nonidealities: Due to the significant time and energy
required to train new large versions of DNNs for challenging
cognitive tasks, such as biomedical and healthcare data pro-
cessing [9], [112], the training of the algorithms is usually
undertaken in data centers [9], [13]. The pretrained DNN can
then be transferred to be used on memristive crossbars. There
are several different frameworks and tools that can be used to
simulate and facilitate this transition [113]. In a recent study,
we have developed a comprehensive tool named MemTorch,
which is an open source, general, high-level simulation plat-
form that can fully integrate any behavioral or experimental
memristive device model into crossbar architectures to design
MDNNs [108].

Here, we utilize the benchmark biomedical signal process-
ing task explained in subsection II-E to demonstrate how
pretrained DNNs can be converted to equivalent MDNNs, and
how non-ideal memristive devices can be simulated within
MDNNs prior to hardware realization. The conversion process,
which can be generalized to other biomedical models using
MemTorch, is depicted in Fig. 7.

The targeted MDNNs are constructed by converting linear
and convolutional layers from PyTorch pre-trained DNNs
to memristive equivalent layers employing 1-Transistor-1-
Resistor (1T1R) crossbars. A double-column scheme, in which
two crossbars are used to represent positive and negative
weight values, is used to represent network weights within
memristive crossbars. The converted MDNN models are tuned
using linear regression, as described in [108]. The complete
and detailed process and the source code of the network
conversion for the experiments shown in this subsection are
provided in a publicly accessible complementary Jupyter Note-
book3.

During the conversion, any memristor model can be used.
For the benchmark task, a reference VTEAM model [114]
is instantiated using parameters from Pt/Hf/Ti Resistive Ran-
dom Access Memory (RRAM) devices [115], to model all
memristive devices within converted linear and convolutional

3https://github.com/coreylammie/TBCAS-Towards-Healthcare-and-
Biomedical-Applications/blob/master/MemTorch.ipynb

https://github.com/coreylammie/TBCAS-Towards-Healthcare-and-Biomedical-Applications/blob/master/MemTorch.ipynb
https://github.com/coreylammie/TBCAS-Towards-Healthcare-and-Biomedical-Applications/blob/master/MemTorch.ipynb
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Fig. 7. Conversion process of a DNN trained in PyTorch and mapped to a Memristive DNN using MemTorch [108], to parallelize MVMs using 1T1R
memristive crossbars and to take into account memristor variability including finite number of conductance states and non-ideal RON and ROFF distributions.

layers. As already mentioned, memristive devices have in-
evitable variability, which should be taken into account when
implementing an MDNNs for learning and/or inference. Also,
depicted in Fig. 7 are visualizations of two non-ideal device
characteristics: the finite number of conductance states and
device-to-device variability. Using MemTorch [108], not only
can we convert any DNNs to an equivalent MDNNs utilizing
any memristive device model, we are also able to comprehen-
sively investigate the effect of various device non-idealities and
variation on the performance of a possible MDNN, before it
is physically realized in hardware.

In order to demonstrate an example which includes vari-
ability in our MDNN simulations, device-device variability is
introduced by sampling ROFF for each device from a normal
distribution with R̄OFF = 2,500Ω with standard deviation 2σ,
and RON for each device from a normal distribution with R̄ON
= 100Ω with standard deviation σ.

In Fig. 8, for the converted memristive MLP and CNN
that process APS hand-gesture inputs, we gradually increase
σ from 0 to 500, and compare the mean test set accuracy
across the three folds. As can be observed from Fig. 8, with
increasing device-to-device variability, i.e. the variability of
RON and ROFF, the performance degradation increases across
all networks. For all simulations, RON and ROFF are bounded
to be positive.

6) Memristive DNNs towards biomedical applications:
Although some previous small-scale MDNNs have been sim-
ulated for biomedical tasks such as cardiac arrhythmia clas-
sification [116], or have been implemented on a physical
programmable memristive array for breast cancer diagno-
sis [117], there is currently no large-scale MDNN, even at the
simulation-level, which has realized any practical biomedical
processing tasks.

Similar to the recent advances in CMOS-driven DNN
accelerator chips discussed in subsection III-A, there have
been promises in partial [102] or full [103] realizations of
MDNNs in hardware, which are shown to achieve significant
energy saving compared to state-of-the-art GPUs. However,
unlike their CMOS counterparts, these implementations have

been only able to perform simple tasks such as MNIST
and CIFAR classification. This is, of course, not suitable for
implementing large-scale CNNs and RNNs, which as shown
in subsection III-A are required for biomedical and healthcare
tasks dealing with image [32] or temporal [33] data types.

In addition, following similar optimization strategies as
those used in CMOS accelerators, [118] has simulated the use
of quantized and binarized MDNNs and their error tolerance
in a biomedical ECG processing task and has shown their
potential to achieve significant energy savings compared to
full-precision MDNNs. However, due to the many intricacies
in the design process and considering the peripheral circuitry
that may offset the benefits gained by using MDNNs, full
hardware design is required before the actual energy saving
of such binarized MDNNs can be verified.

In the next section, we provide our analysis and perspective
on the use of the three hardware technologies discussed in this
section for DL-based biomedical and healthcare applications.
We also discuss how SNN-based neuromorphic processors can
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Fig. 8. Simulation results investigating the performance of MDNNs for hand
gesture classification adopting non-ideal Pt/Hf/Ti ReRAM devices. Device-
device variability is simulated using MemTorch [108].
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benefit edge-processing for biomedical applications.

IV. ANALYSIS AND PERSPECTIVE

The use of ANNs trained with the backpropagation learning
algorithm in the domain of healthcare and for biomedical
applications such as cancer diagnosis [130] or ECG monitor-
ing [131] dates back to the early 90s. These networks, were
typically small-scale networks run on normal workstations. As
they were not deep and did not have too many parameters,
they did not demand high-performance accelerators. However,
with the resurgence of CNNs in the early 2010s followed
by the rapid spread of DNNs and large data-sets, came
the need for high-speed specialized processors. This need
resulted in repurposing GPUs and actively researching other
hardware and design technologies including ASIC CMOS
chips (see Table II) and platforms [13], memristive crossbars
and in-memory computing [102], [103], [109], and FPGA-
based designs for DNN training [94], [95] and inference [92].
Despite notable progress in deploying non-GPU platforms
for DL acceleration, similar to other data processing tasks,
biomedical and healthcare tasks have mainly relied on standard
technologies and GPUs. Currently, depending on the size
of the required DNN, its number of parameters, as well as
the available training dataset size, biomedical DL tasks are
usually “trained” on high-performance workstations with one
or more GPUs [12], [19], on customized proprietary processors
such as Google TPU [9], or on various Infrastructure-as-
a-Service (IaaS) provider platforms, including Nvidia GPU
cloud, Google Cloud, and Amazon Web Services, among
others. This is mostly due to (i) the convenience these plat-
forms provide using high-level languages such as Python; (ii)
the availability of wide-spread and open-source DL libraries
such as TensorFlow and PyTorch; and (iii) strong community
and/or provider support in utilizing GPUs and IaaS for training
various DNN algorithms and applications.

However, DL inference can benefit from further research
and development on emerging and mature hardware and design
technologies, such as those discussed in this paper, to open
up new opportunities for deploying healthcare devices closer
to the edge, paving the way for low-power and low-cost DL
accelerators for PoC devices and healthcare IoT. Despite this
fact, hardware implementations of biomedical and healthcare
inference engines are very sparse. Table III lists a summary of
the available hardware implementations and hardware-based
simulations of DNNs used for healthcare and biomedical
signal processing applications, using the three hardware tech-
nologies covered herein. In addition, the table shows existing
biomedical signal processing tasks implemented on generic
low-power spiking neuromorphic processors.

A. CMOS Technology Has Been the Main Player for DL
Inference in the Biomedical Domain

Similarly to general-purpose GPUs, all other non-GPU
DL inference engines at present are implemented in CMOS.
Therefore, it is obvious that most of the future edge-based
biomedical platforms would rely on these inference platforms.
In Table II, we listed a number of these accelerators that are

mainly developed for low-power mobile applications. How-
ever, before the deployment of any edge-based DL accelerators
for biomedical and healthcare tasks, some challenges need
to be overcome. A non-exhaustive list of these obstacles
include: (i) the power and resource constraints of available
mobile platforms which, despite significant improvements, are
still not suitable for high-risk medical tasks; (ii) the need to
verify that a DL system can generalize beyond the distribution
they are trained and tested on; (iii) bias that is inherent to
datasets which may have adverse impacts on classification
across different populations; (iv) confusion surrounding the
liability of AI algorithms in high-risk environments [132];
and (v) the lack of a streamlined workflow between medical
practitioners and DL. While the latter challenges are matters of
legality and policy, the former issues highlight the fundamental
need to understand where dataset bias comes from, and how
to improve our understanding of why neural networks learn
the features they do, such that they may generalize across
populations in a manner that is safe for receivers of medical
care.

In addition, to make the use of any accelerators possible
for general as well as more complex biomedical applications,
the field requires strong hardware-software co-design to build
hardware that can be readily programmed for biomedical
tasks. One successful co-design is the Google TPU [13],
which has successfully been used to surpass human experts in
medical imaging tasks [9]. Google has used a similar CMOS
TPU technology to design inference engines [52], which are
very promising as edge hardware to enable mobile healthcare
care applications. The main reason for this promise is the
availability of the established software platforms (such as
TensorFlow Light) and the community support for the Google
TPU.

Overall, great advancements have happened for DL acceler-
ators in the past several years and they are currently stemming
in various aspects of our life from self-driving cars to smart
personal assistants. After overcoming a number of obstacles
such as those mentioned above, we may be also able to widely
integrate these DL accelerators in healthcare and biomedical
applications. However, for some medical applications such as
monitoring that requires always-on processing, we still need
systems with orders of magnitude better power efficiency, so
they can run on a simple button battery for a long time. To
achieve such systems, one possible approach is to process data
only when available and make our processing asynchronous.
A promising method to achieve such goals is the use of brain-
inspired SNN-based neuromorphic processors.

B. Towards Edge Processing for Biomedical Applications With
Neuromorphic Processors

Although most of the efforts presented in this work focused
on DNN accelerators, there are also notable efforts in the
domain of SNN processors that offer complementary advan-
tages, such as the potential to reduce the power consumption
by multiple orders of magnitude, and to process the data in
real time. These so-called neuromorphic processors are ideal
for end-to-end processing scenarios, e.g., in wearable devices
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TABLE III
EXISTING HARDWARE IMPLEMENTATIONS AND HARDWARE-BASED SIMULATIONS OF DNN ACCELERATORS USED FOR HEALTHCARE AND BIOMEDICAL

APPLICATIONS, AND GENERIC SNN NEUROMORPHIC PROCESSORS UTILIZED FOR BIOMEDICAL SIGNAL PROCESSING. †SIMULATION-BASED

Biomedical or Healthcare Task DNN/SNN Architecture Hardware

Image-based breast cancer diagnosis [9] Ensemble of CNNs CMOS (Google TPU)
Motor intention decoding [79] ELM CMOS
Spatial filtering and dimensionality reduction for brain-state classifica-
tion [80]

Autoencoder CMOS

Energy-efficient multi-class ECG classification [44] Spiking RNN CMOS
EMG signal processing [45] Spiking CNN/MLP CMOS
ECG signal processing [119] Spiking RNN CMOS
EMG signal processing [120] Spiking RNN CMOS
EMG signal processing [121] Feed-forward SNN CMOS
EMG and EEG signal processing [122] Recurrent 3D SNN CMOS
EEG and LFP signal processing [123] TrueNorth-compatible CNN CMOS
Real-time closed loop neural decoding [124], [125] Spiking ELM CMOS

ECG processing for cardiac arrhythmia classification [116] MLP Memristors†
Breast cancer diagnosis [117] MLP Programmable Memristor-CMOS system
ECG signal processing [118] Binarized CNN Memristors†

ECG arrhythmia detection for hearth monitoring [97] MLP FPGA
Mass-spectrometry for real-time cancer detection [98] MLP FPGA
ECog signal processing for BCI [99] MLP FPGA
Signal processing for fall detection [126] MLP FPGA
BCI-decoding of large-scale neural sensors [127] LTSM FPGA

EEG processing for energy-efficient Neurofeedback devices [100] LTSM FPGA and CMOS
PPG signal processing for heart rate estimation [128] CNN/LTSM FPGA and CMOS
Multimodal signal classification for physical activity monitoring [129] CNN FPGA and CMOS

where the streaming input needs to be monitored in continuous
time in an always-on manner.

There are already some works using both mixed analog-
digital and digital neuromorphic platforms for biomedical
tasks, showing promising results for always-on embedded
biomedical systems. Table IV shows a summary of today’s
large scale neuromorphic processors, used for biomedical
signal processing. The first chip presented in this table is
DYNAP-SE [133], a multi-core mixed-signal neuromorphic
implementation with analog neural dynamics circuits and
event-based asynchronous routing and communication. The
DYNAP-SE chip has been used to implement four of the
seven SNN processing systems listed in Table III. These SNNs
are used for EMG [120], [121] and ECG [119], [44] signal
processing. The DYNAP-SE was also used to build a spiking
perceptron as part of a design to classify and detect High-
Frequency Oscillations (HFO) in human intracranial EEG [49].

In [44], [119], [120] a spiking RNN is used to integrate the
ECG/EMG patterns temporally and separate them in a linear
fashion to be classifiable with a linear read-out. A Support
Vector Machine (SVM) and linear least square approximation
is used in the read out layer for [119], [44] and overall
accuracy of 91% and 95% for anomaly detection were reached
respectively. In [120], the timing and dynamic features of
the spiking RNN on EMG recordings was investigated for
classifying different hand gestures. In [121] the performance of
a feedforward SNN and a hardware-friendly spiking learning
algorithm for hand gesture recognition using superficial EMG
was investigated and compared to traditional machine learning
approaches, such as SVM. Results show that applying SVM on
the spiking output of the hidden layer achieved a classification
rate of 84%, and the spiking learning method achieved 74%

with a power consumption of about 0.05 mW . This was
compared to state-of-the-art embedded system showing that
the proposed spiking network is two orders of magnitude more
power efficient [134], [135].

The other neuromorphic platforms listed in Table IV include
digital architectures such as SpiNNaker [136], TrueNorth [137]
and Loihi [138]. SpiNNaker has been used for EMG and
EEG processing and the results show improved classification
accuracy compared to traditional machine learning meth-
ods [122]. In [123], the authors developed a framework for
decoding EEG and LFP using CNNs. The network was first
developed in Caffe and the result was then used as a basis
for building a TrueNorth-compatible neural network. The
TrueNorth-compatible network achieved the highest classifi-
cation, at approximately 76%. In [124], [125], the authors
present a low-power neuromorphic platform named Spike-
input Extreme Learning Machine (SELMA), which performs
continuous state decoding towards fully-implantable wireless
intracortical BMI. Recently, the benchmark hand-gesture clas-
sification introduced in subsection II-E, was processed and
compared on two additional digital neuromorphic platforms,
Loihi and ODIN/MorphIC [139], [140]. A spiking CNN was
implemented on Loihi and a spiking MLP was implemented
on ODIN/MorphIC [45]. The results achieved using these
networks are presented in Table V.

On-chip adaptation and learning mechanisms, such as those
present in some of the neuromorphic devics listed in Table IV,
could be a game changer for personalized medicine, where the
system can adapt to each patient’s unique bio signature and/or
drift over time. However, the challenge of implementing effi-
cient on-chip online learning in these types of neuromorphic
architectures has not yet been solved. This challenge lies on
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TABLE IV
NEUROMORPHIC PLATFORMS USED FOR BIOMEDICAL SIGNAL PROCESSING

Neuromorphic Chip DYNAP-SE SpiNNaker TrueNorth Loihi ODIN

CMOS Technology 180 nm ARM968, 130 nm 28 nm 14 nm FinFET 28 nm FDSOI

Implementation Mixed-signal Digital Digital ASIC Digital ASIC Digital ASIC

Neurons per core 256 1000 (1M cores) 256 Max 1k 256

Synapses per core 16k 1M 64k 114k-1M 64k

Energy per SOP 17 pJ @ 1.8V Peak power 1W per chip 26 pJ @ 0.775 23.6 pJ @ 0.75V 12.7 pJ@0.55V

Size 38.5 mm2 102 mm2 - 60 mm2 0.086 mm2

Biosignal processing
application

EMG [121],
ECG [119], HFO [49]

EMG and EEG [122] EEG and LFP [123] EMG [45] EMG [45]

two main factors: locality of the weight update and weight
storage.

Locality: There is a hardware constraint that the learning
information for updating the weights of any on-chip network
should be locally available to the synapse, otherwise most of
the silicon area would be consumed by the wires, required
to route the update information to it. As Hebbian learn-
ing satisfies this requirement, most of the available on-chip
learning algorithms focus on its implementation in forms of
unsupervised/semi-supervised learning [139], [141]. However,
local Hebbian-based algorithms are limited in learning static
patterns or using very shallow networks [142]. There are
also some efforts in the direction of on-chip gradient-descent
based methods which implement on-chip error-based learning
algorithms where the least mean square of a neural network
cost function is minimized. For example, spike-based delta
rule is the most common weight update used for single-layer
networks which is the base of the back-propagation algorithm
used in the vast majority of current multi-layer neural net-
works. Single layer mixed-signal neuromorphic circuit imple-
mentation of the delta rule have already been designed [143]
and employed for EMG classification [121]. Expanding this to
multi-layer networks involves non-local weight updates which
limits its on-chip implementation. Making the backpropagation
algorithm local is a topic of on-going research [144], [145],
[146].

Weight storage: The holy grail weight storage for online
on-chip learning is a memory with non-volatile properties
whose state can change linearly in an analog fashion. Non-
volatile memristive devices provide a great potential for this.
Therefore, there is a large body of literature in combining
the maturity of CMOS technology with the potential of the
emerging memories to take the best out of the two worlds.

The integration of CMOS technology with that of the
emerging devices has been demonstrated for non-volatile fil-
amentary switches [147] already at a commercial level [148].
There have also been some efforts in combining CMOS and
memristor technologies to design supervised local error-based
learning circuits using only one network layer by exploiting
the properties of memristive devices [143], [149], [150].

Apart from the above-mentioned benefits in utilizing mem-
ristive devices for online learning in SNN-based neuromorphic
chips, as discussed in subsection III-C, memristive devices

have also shown interesting features to improve the power
consumption and delay of conventional DNNs. However, as
shown in Table III, memristor-based DNNs are very sparse in
the biomedical domain, and existing works are largely based
only on simulation.

C. Why Is the Use of MDNNs Very Limited in the Biomedical
Domain?

Currently there are very few hardware implementations of
biomedical MDNNs that make use of general programmable
memristive-CMOS, and only one programmed to construct
an MLP for cancer diagnosis. We could also find two other
memristive designs in literature for biomedical applications
(shown in Table III), but they are only simulations considering
memristive crossbars. This sparsity is despite the significant
advantages that memristors provide in MAC parallelization
and in-memory computing paradigm, while being compatible
with CMOS technology [151]. These features make memris-
tors ideal candidates for DL accelerators in general, and for
portable and edge-based healthcare applications in particular,
because they have stringent device size and power consump-
tion requirements. To be able to use memristive devices in
biomedical domain, though, several of their shortcomings such
as limited endurance, mismatch, and analog noise accumula-
tion must be overcome first. This demands further research in
the materials, as well as the circuit and system design side of
this emerging technology, while at the same time developing
facilitator open-source software [108] to support MDNNs. Fur-
thermore, investigating the same techniques utilized in devel-
oping CMOS-based DL accelerators such as limited precision
data representation [109], [118] and approximate computing
schemes can lead to advances in developing MDNNs and
facilitate their use in biomedical domains.

D. Why and When to Use FPGA for Biomedical DNNs?

Table III shows that FPGA is a popular hardware technology
for implementing simple DL networks such as MLPs [97],
[98], [99], [126] and in a few cases, more complex LSTMs
and CNNs [100], [127], [128], [129]. The table also shows that
FPGAs are mainly used for signal processing tasks and have
not been widely used to run complex DL architectures such
as CNNs. This is mainly because they have limited on-chip
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memory and low bandwidth compared to GPUs. However,
they demonstrate notable benefits in terms of significantly
shorter development time compared to ASICs, and much lower
power consumption than typical GPUs. Besides, significant
power and latency improvement can be gained by customizing
the implementation of various components of a DNN on an
FPGA, compared to running it on a general-purpose CPU
or GPU [98], [100]. For instance, in [100], EEG signals are
processed on FPGAs using two customized hardware blocks
for (i) parallelizing MAC operations and (ii) efficient recurrent
state updates, both of which are key elements of LSTMs. This
has resulted in almost an order of magnitude power efficiency
compared to GPUs. This efficiency is critical in many edge-
computing applications including DNN-based point-of-care
biomedical devices [21] and healthcare IoT [20], [64].

Another benefit of FPGAs is that a customized efficient
FPGA design can be directly synthesized into an ASIC using
a nanometer-node CMOS technology to achieve even more
benefits [128], [129]. For instance, [100] has shown near 100
times energy efficiency improvement as an ASIC in a 15-nm
CMOS technology, compared to its FPGA counterpart.

Although low-power consumption and affordable cost are
two key factors for almost any edge-computing or near-sensor
device, these are even more important for biomedical devices
such as wearables, health-monitoring systems, and PoC de-
vices. Therefore, FPGAs present an appealing solution, where
their limitations can be addressed for a customized DNN using
specific design methods such as approximate computing [95]
and limited-precision data [92], [94], depending on the cost,
required power consumption, and the acceptable accuracy of
the biomedical device.

Another programmable low-power device that can be used
in biomedical applications are Field Programmable Analog
Arrays (FPAAs). These are constructed using programmable
Computational Analog Blocks (CBAs) and interconnects. Un-
like FPGAs, FPAAs tend to be more application driven than
general purpose as they may be current mode or voltage
mode devices [152]. FPAAs have been shown to perform
computation with 1000 times more power efficiency while
reducing the required area by 100 times when compared to
FPGAs [153]. Therefore, they are a promising candidate for
accelerating biomedical signal processing if machine learning
algorithms such as ANNs can be implemented using them.

In 2003, [154] explored ANNs with differential feedback,
and in 2006 [155] implemented an ANN using multi-chip
FPAAs. More recently, [156] have demonstrated that VMMs
can be efficiently computed using FPAAs, which can be used
to compute linear and unrolled convolution layers within
DNNs. However, while FPAAs have been used in several
biomedical applications ranging from knee-joint rehabilita-
tion [153] to the amplification of various bio-electric sig-
nals [157], the implementation of a FPAA DNN accelerator,
which can be used in biomedical and general applications, is
yet to be explored.

E. Benchmarking EMG Processing Across Multiple DNN and
SNN Hardware Platforms

In Table V, we compare our FPGA and memristive im-
plementations to other DNN accelerators and neuromorphic
processors from [45]. In [45], the authors presented a sensor
fusion neuromorphic benchmark for hand-gesture recognition
based on EMG and event-based camera. Two neuromorphic
platforms, Loihi [138] and ODIN+MorphIC [139], [140], were
deployed and the results were compared to traditional machine
learning baselines implemented on an embedded GPU, the
NVIDIA Jetson Nano. Loihi and ODIN+MorphIC are digital
neuromorphic platforms. Loihi is a 128-core neuromorphic
chip fabricated on 14 nm FinFET process, designed by Intel
Labs. It implements adaptive self-modifying event-driven fine-
grained parallel computations used to implement learning and
inference with high efficiency. ODIN (Online-learning Dig-
ital spiking Neuromorphic) is designed using 28 nm FDSOI
CMOS technology and consists of a single neurosynaptic core
with 256 neurons and 2562 synapses that embed a 3-bit weight
and a mapping table bit that allows enabling or disabling
Spike-timing-dependent plasticity (STDP). MorphIC is a quad-
core digital neuromorphic processor with 2k Leaky Integrate
and Fire (LIF) neurons and more than 2M synapses in 65 nm
CMOS technology [140]. They can be either programmed
with offline-trained weights or trained online with a stochastic
version of Spike Driven Synaptic Plasticity (SDSP).

For the spiking architectures shown in Table V, the vi-
sion input and EMG data were individually processed using
spiking CNN and spiking MLP respectively, and fused in
the last layer. Loihi was trained using SLAYER [158], a
backpropagation framework used for evaluating the gradient
of any kind of SNN. It is a dt-based SNN backpropagation
algorithm that keeps track of the internal membrane potential
of the spiking neuron and uses it during gradient propagation.
Both ODIN and Morphic training was carried out in Keras
with quantization-aware stochastic gradient descent following
a standard ANN-to-SNN mapping approach.

The dataset used is described in Section II-E. It is a
collection of 5 hand gestures from sign language (e.g. ILY)4.
In the comparison proposed in Table V the input and hidden
layers are sequenced with the ReLU activation function, and
output layers are fed through Softmax activation functions
to determine class probabilities. Dropout layers are used in
all networks to avoid over-fitting. The DNN architectures are
determined in the table caption.

The platforms used for each system in Table V are as
follows: ODIN+MorphIC [139], [140] and Loihi [138] neu-
romorphic platforms were used for spiking implementations;
NVIDIA Jetson Nano was used for all embedded GPU im-
plementations; OpenVINO Toolkit FPGA was used for all
FPGA implementations, and MemTorch [108] was used for
converting the MLP and CNN networks to their corresponding
MDNNs to determine the test set accuracies of all memristive
implementations.

4https://zenodo.org/record/3663616#.X2m5GC2cbx4. Further implementa-
tion details can be found in [45].

https://zenodo.org/record/3663616##.X2m5GC2cbx4
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TABLE V
COMPARISON OF CONVENTIONAL DNNS IMPLEMENTED ON VARIOUS HARDWARE PLATFORMS WITH SPIKING DNN NEUROMORPHIC SYSTEMS ON THE

BENCHMARK BIOMEDICAL SIGNAL PROCESSING TASK OF HAND GESTURE RECOGNITION FOR BOTH SINGLE SENSOR AND SENSOR FUSION, AS
EXPLAINED IN SUBSECTION II-E. THE RESULTS OF THE ACCURACY ARE REPORTED WITH MEAN AND STANDARD DEVIATION OBTAINED OVER A 3-FOLD

CROSS VALIDATION. LOIHI, EMBEDDED GPU, AND ODIN+MORPHIC IMPLEMENTATION RESULTS ARE FROM [45]. THE DNN ARCHITECTURES
ADOPTED ARE AS FOLLOWS: �8C3-2P-16C3-2P-32C3-512-5 CNN. †16-128-128-5 MLP. ‡16-230-5 MLP. ∓4 × 400-210-5 MLP. ∪EMG AND

APS/DVS NETWORKS ARE FUSED USING A 5-NEURON DENSE LAYER.

Platform Modality Accuracy (%) Energy (uJ) Inference time (ms) EDP (uJ * s)

Loihi
(Spiking)

EMG (MLP†) 55.7 ± 2.7 173.2 ± 21.2 5.89 ± 0.18 1.0 ± 0.1
DVS (CNN�) 92.1 ± 1.2 815.3 ± 115.9 6.64 ± 0.14 5.4 ± 0.8
EMG+DVS (CNN∪) 96.0 ± 0.4 1104.5 ± 58.8 7.75 ± 0.07 8.6 ± 0.5

ODIN+MorphIC
(Spiking)

EMG (MLP‡) 53.6 ± 1.4 7.42 ± 0.11 23.5 ± 0.35 0.17 ± 0.01
DVS (MLP∓) 85.1 ± 4.1 57.2 ± 6.8 17.3 ± 2.0 1.00 ± 0.24
EMG+DVS (MLP∪) 89.4 ± 3.0 37.4 ± 4.2 19.5 ± 0.3 0.42 ± 0.08

Embedded GPU

EMG (MLP†) 68.1 ± 2.8 (25.5 ± 8.4) ·103 3.8 ± 0.1 97.3 ± 4.4
EMG (MLP‡) 67.2 ± 3.6 (23.9 ± 5.6) ·103 2.8 ± 0.08 67.2 ± 2.9
APS (CNN�) 92.4 ± 1.6 (31.7 ± 7.4) ·103 5.9 ± 0.1 186.9 ± 3.9
APS (MLP∓) 84.2 ± 4.3 (30.2 ± 7.5) ·103 6.9 ± 0.1 211.3 ± 6.1
EMG+APS (CNN∪) 95.4 ± 1.7 (32.1 ± 7.9) ·103 6.9 ± 0.05 221.1 ± 4.1
EMG+APS (MLP∪) 88.1 ± 4.1 (32.0 ± 8.9) ·103 7.9 ± 0.05 253 ± 3.9

FPGA

EMG (MLP†) 67.2 ± 2.3 (17.6 ± 1.1) 103 4.2 ± 0.1 74.1 ± 1.2
EMG (MLP‡) 63.8 ± 1.4 (13.9 ± 1.8) ·103 3.5 ± 0.1 48.9 ± 1.9
APS (CNN�) 96.7 ± 3.0 (24.0 ± 1.2) 103 5.4 ± 0.2 130.8 ± 1.4
APS (MLP∓) 82.9 ± 8.4 (23.1 ± 2.6) ·103 5.7 ± 0.2 131.4 ± 2.8
EMG+APS (CNN∪) 94.8 ± 2.0 (31.2 ± 3.0) 103 6.3 ± 0.1 196.3 ± 3.1
EMG+APS (MLP∪) 83.4 ± 2.8 (31.1 ± 1.4) ·103 7.3 ± 0.2 228.2 ± 1.6

Memristive

EMG (MLP†) 64.6 ± 2.2 0.038 6.0 ·10−4 2.38 ·10−8

EMG (MLP‡) 63.8 ± 1.4 0.026 4.0 ·10−4 1.04 ·10−8

APS (CNN�) 96.2 ± 3.3 4.83 1.0 ·10−3 4.83 ·10−6

APS (MLP∓) 82.4 ± 8.5 0.18 4.0 ·10−4 7.2 ·10−8

EMG+APS (CNN∪) 94.8 ± 2.0 4.90 1.2 ·10−3 5.88 ·10−6

EMG+APS (MLP∪) 83.4 ± 2.8 0.33 6.0 ·10−4 1.98 ·10−7

From Table V, it can be observed that, when transitioning
from generalized architectures to application specific proces-
sors, more optimized processing of a subset of given tasks can
be achieved. Moving up the specificity hierarchy from GPU to
FPGA to memristive networks shows orders of magnitude of
improvement in both MLP and CNN processing, but naturally
at the expense of a generalizable range of tasks. While
GPUs are relatively efficient at training networks (compared
to CPUs), the impressive metrics presented by memristor
(RRAM in this simulations) is coupled with limited endurance.
This is not an issue for read-only tasks, as is the case with
inference, but training is thwarted by the thousands of epochs
of weight updates which limits broad use of RRAMs in
training. Rather, more exploration in alternative resistive-based
technologies such as Magnetoresistive Random Access Mem-
ory (MRAM) could prove beneficial for tasks that demand
high endurance.

After determining the test set accuracy of each MDNN
using MemTorch [108], we determined the energy required to
perform inference on a single input, the inference time, and the
Energy-Delay Product (EDP) by adopting the metrics in [159],
for a tiled memristor architecture. All assumptions made in
our calculations are listed below. Parameters are adopted from
those given in a 1T1R 65nm technology, where the maximum
current during inference is 3µA per cell with a read voltage of
0.3V. Each cell is capable of storing 8 bits with a resistance
ratio of 100, and mapping signed weights is achieved using

a dual column representation. All convolutions are performed
by unrolling the kernels and performing MVMs, and the fully
connected layers have the fan-in weights for a single neuron
assigned to one column. Each crossbar has an aspect ratio
of 256×64 to enable more analog operations per ADC when
compared to a 128×128 array. Where there is insufficient
space to map weights to a single array, they are distributed
across multiple arrays, with their results to be added digitally.
Throughput can be improved at the expense of additional
arrays for convolutional layers, by duplicating kernels such
that multiple inputs can be processed in parallel. The number
of tiles used for each network is assumed to be the exact
number required to balance the processing time of each layer.
The power consumption of each current-mode 8-bit ADC is
estimated to be 2×10−4 W with an operating frequency of 40
MHz (5 MHz for bit-serial operation) [159]. The ADC latency
is presumed to dominate digital addition of partial products
from various tiles. The dynamic range of each ADC has been
adapted to the maximum possible range for each column, and
each ADC occupies a pair of columns.

The above presumptions lead to pre-silicon results that
are extremely promising for memristor arrays, as shown in
Table V. But it should be clear that these calculations were
performed for network-specific architectures, rather than a
more general application-specific use-case. That is, we assume
the chip has been designed for a given neural network model.
The other comparison benchmarks are far more generalizable,
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in that they are suited to not only handle most network
topologies, but are also well-suited for training. The substantial
improvement of inference time over other methods is a result
of duplicate weights being mapped to enable higher paral-
lelism, which is tolerable for small architectures, but lends
to prohibitively large ADC power consumption for computer
vision tasks which rely on deep networks and millions of pa-
rameters, such as VGG-16. In addition, the area of each ADC
is estimated to be 3×10−3mm2, which is orders of magnitude
larger than the area of each RRAM cell (1.69×10−7mm2).
This disparity implies that pitch-matching is not viable. In-
stead, to achieve parallelism, weights must be duplicated
across tiles which demands redundancy. This improvement
in parallelism thus comes at the cost of additional area and
power consumption. The use of memristors as synapses in
spike-based implementations may be more appropriate, so as
to reduce the ADC overhead by replacing multi-bit ADCs with
current sense amplifiers instead, and reducing the reliance on
analog current summation along resistive and capacitive bit-
lines.

Spike-based hardware show approximately two orders of
magnitude improvement in the EDP from Table V when
compared to their GPU and FPGA counterparts, which high-
lights the prospective use of such architectures in always-on
monitoring. This is necessary for enhancing the prospect of
ambient-assisted living, which would allow medical resources
to be freed up for tasks that are not suited for automation. In
general, one would expect that data should be processed in its
naturalized form. For example, 2D CNNs do not discard the
spatial relations between pixels in an image. Graph networks
are optimized for connectionist data, such as the structure
of proteins. By extension, the discrete events generated by
electrical impulses such as in EMGs, EEGs and ECGs may
also be optimized for SNNs. Of course, this discounts any
subthreshold firing patterns of measured neuron populations.
But one possible explanation for the suitability of spiking
hardware for biological processes stems from the natural
timing of neuronal action potentials. Individual neurons will
typically not fire in excess of 100 Hz, and the average heart
rate (and correspondingly, ECG spiking rate) will not exceed 3
Hz. There is a clear mismatch between the clock rate of non-
spiking neural network hardware, which tend to at least be in
the MHz range, and spike-driven processes. This introduces a
significant amount of wastage in processing data when there
is no new information to process (e.g., in between heartbeats,
action potentials, or neural activity).

Nonetheless, it is clear that accuracy is compromised when
relying on EMG signals alone, based on the approximately
10% decrease of classification accuracy on the Loihi chip and
ODIN+MorphIC, as against their GPU/FPGA counterparts.
This could be a result of spike-based training algorithms
lagging behind in maturity compared to conventional neural
network methods, or it could be an indication that critical
information is being discarded when neglecting the subthresh-
old signals generated by populations of neurons. But when
EMG and DVS data are combined, this multi-sensory data
fusion of spiking signals positively reinforce upon each other
with an approximately 4% accuracy improvement, whereas

combining non-spiking, mismatched data representations leads
to marginal improvements, and even a destructive effect (e.g.,
non-spiking CNN implementation on FPGA and memristive
arrays). This may be a result of EMG and APS data taking on
completely different structures. This is a possible indication
that feature extraction from merging the same structural form
of data (i.e., as spikes) proves to be more beneficial than com-
bining a pair of networks with two completely different modes
of data (i.e., EMG signals with pixel-driven images). This
allows us to draw an important hypothesis: neural networks
can benefit from a consistent representation of data generated
by various sensory mechanisms. This is supported by biology,
where all biological interpretations are typically represented
by graded or spiking action potentials.

F. Deep Network Accelerators and Patient-specific Model
Tuning

Given the inherent variability between patients, it is dif-
ficult to train and deploy a single model to a large group
of individuals each with unique signature(s). Consequently,
significant efforts are being made to facilitate patient-specific
model tuning processes [160], [161], [72]. Patient-specific
Modeling (PSM) is the development of computational models
of human or animal pathophysiology that are individualized
to patient-specific data [160].

In the DL domain, existing ANN and neuromorphic models
can be retrofitted to specific patients using transfer learning
and tuning algorithms. In this approach, the network is first
trained on a large dataset including data from various patients
to acquire the domain-specific knowledge of the targeted
task. Parts of the large network are then retrained, i.e. tuned,
using patient-specific data, to produce better performance for
individual patients. This way, the domain-specific features of
the large network are transferred to the smaller network that is
retrained to learn patient-specific features [72]. Depending on
the availability of patient-specific data, PSM can be performed
online (on-chip) or offline (off-chip).

1) Online patient-specific model tuning: Considering con-
cerns surrounding the sensitive nature of individual patient
data, and the ability of some recent edge-AI CMOS chips
such as LNPU [55] to perform online training, patient-specific
model tuning can be performed online on the hardware deep
learning accelerator. To achieve this, a sufficient amount of
patient data that is fed to the accelerator over time can
be gathered to individualize the initial generic model. An
accelerator that can adapt its working to the specific needs
of a patient would be highly beneficial but it may require
buffering of data [162], which needs higher on-chip memory
and may introduce power overheads.

2) Offline patient-specific model tuning: A convenient ap-
proach to tune general models, with domain-specific knowl-
edge, to patient-specific data is offline off-chip transfer learn-
ing. However, unlike online tuning, the offline approach re-
quires prior patient data measurements, which may not be
readily available. Besides, the offline approach may require
undesired remote storage and processing of private patient data
to retrain and tune generic models.
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V. CONCLUSION

The use of DL in biomedical signal processing and health-
care promises significant utility for medical practitioners and
their patients. DNNs can be used to improve the quality of life
for chronically ill patients by enabling ambient monitoring for
abnormalities, and correspondingly can reduce the burden on
medical resources. Proper use can lead to reduced workloads
for medical practitioners who may divert their attention to
time-critical tasks that require a standard beyond what neural
networks can achieve at this point in time.

We have stepped through the use of various DL accelera-
tors on a disparate range of medical tasks, and shown how
SNNs may complement DNNs where hardware efficiency is
the primary bottleneck for widespread integration. We have
provided a balanced view to how memristors may lead to
optimal hardware processing of both DNNs and SNNs, and
have highlighted the challenges that must be overcome before
they can be adopted at a large-scale. While the focus of this
tutorial and review is on hardware implementation of various
DL algorithms, the reader should be mindful that progress
in hardware is a necessary, but insufficient, condition for
successful integration of medical-AI.

Adopting medical-AI tools is clearly a challenge that de-
mands the collaborative attention of healthcare providers, hard-
ware and software engineers, data scientists, policy-makers,
cognitive neuroscientists, device engineers and materials sci-
entists, amongst other specializations. A unified approach
to developing better hardware can have pervasive impacts
upon the healthcare industry, and realize significant payoff by
improving the accessibility and outcomes of healthcare.
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